Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Dev Med Child Neurol ; 66(7): 948-957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38247023

ABSTRACT

Hydrocephalus is rarely described in Joubert-Boltshauser syndrome (JBTS). The aim of this study was to investigate whether this association is a chance occurrence or potentially signifies a new phenotypic subtype. The databases of Wolfson Medical Center, Sourasky Medical Center, and EB's personal collection were reviewed. Records from an additional family were obtained from RG. The patients' medical records, prenatal ultrasounds, and magnetic resonance imaging were assessed. In addition, we reviewed the medical literature for the association of ventriculomegaly/hydrocephalus (VM/HC) in JBTS. Only seven cases (from five families) were found with prenatal onset of VM/HC, diagnosed during the second trimester; three pregnancies were terminated, one was stillborn and three were born, of which one died within a week, and another died at the age of 6 years. Additional central nervous system findings included dysgenesis of the corpus callosum, delayed sulcation, polymicrogyria, and pachygyria. We found 16 publications describing 54 patients with JBTS and VM/HC: only five were diagnosed at birth and three were diagnosed prenatally. Hydrocephalus is extremely rare in JBTS. The recurrence of this association, reported in several publications in multiple family members, suggests that it might represent a new phenotypic subtype of JBTS possibly associated with specific genes or variants. Further genetic studies are needed to confirm this hypothesis. WHAT THIS PAPER ADDS: The association of fetal hydrocephalus with Joubert-Boltshauser syndrome (JBTS) is very rare but not a chance association. This association represents a new phenotypic subtype of JBTS possibly linked to specific genes or variants.


Subject(s)
Abnormalities, Multiple , Cerebellum , Eye Abnormalities , Hydrocephalus , Kidney Diseases, Cystic , Retina , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/complications , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Eye Abnormalities/complications , Eye Abnormalities/diagnostic imaging , Abnormalities, Multiple/diagnostic imaging , Female , Kidney Diseases, Cystic/complications , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Male , Retina/abnormalities , Retina/diagnostic imaging , Cerebellar Vermis/abnormalities , Cerebellar Vermis/diagnostic imaging , Magnetic Resonance Imaging , Phenotype , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/complications , Child , Infant, Newborn
2.
J Med Genet ; 60(9): 885-893, 2023 09.
Article in English | MEDLINE | ID: mdl-36788019

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Humans , Cerebellum/abnormalities , Abnormalities, Multiple/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Retina/abnormalities
3.
Dev Med Child Neurol ; 65(4): 544-550, 2023 04.
Article in English | MEDLINE | ID: mdl-36175354

ABSTRACT

AIM: To assess whether microcephaly with pontine and cerebellar hypoplasia (MICPCH) could manifest in the prenatal period in patients with calcium/calmodulin-dependent serine protein kinase (CASK) gene disorders. METHOD: In this international multicentre retrospective study, we contacted a CASK parents' social media group and colleagues with expertise in cerebellar malformations and asked them to supply clinical and imaging information. Centiles and standard deviations (SD) were calculated according to age by nomograms. RESULTS: The study consisted of 49 patients (44 females and 5 males). Information regarding prenatal head circumference was available in 19 patients; 11 out of 19 had a fetal head circumference below -2SD (range -4.1SD to -2.02SD, mean gestational age at diagnosis 20 weeks). Progressive prenatal deceleration of head circumference growth rate was observed in 15 out of 19. At birth, 20 out of 42 had a head circumference below -2SD. A total of 6 out of 15 fetuses had a TCD z-score below -2 (range -5.88 to -2.02). INTERPRETATION: This study expands the natural history of CASK-related disorders to the prenatal period, showing evidence of progressive deceleration of head circumference growth rate, head circumference below -2SD, or small TCD. Most cases will not be diagnosed according to current recommendations for fetal central nervous system routine assessment. Consecutive measurements and genetic studies are advised in the presence of progressive deceleration of head circumference growth rates or small TCD. WHAT THIS PAPER ADDS: Progressive deceleration of fetal head circumference growth rate can be observed. A small transcerebellar diameter is an additional important manifestation. Most cases will not be diagnosed according to current recommendations for fetal central nervous system routine assessment. Consecutive measurements are advised when measurements are within the low range of norm.


Subject(s)
Microcephaly , Nervous System Malformations , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Fetus , Gestational Age , Microcephaly/diagnosis , Nervous System Malformations/genetics , Retrospective Studies
4.
J Med Genet ; 59(9): 888-894, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34675124

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.


Subject(s)
Abnormalities, Multiple , Cerebellar Ataxia , Eye Abnormalities , Intellectual Disability , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Cerebellar Ataxia/genetics , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Eye Abnormalities/genetics , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Male , Phenotype , Repressor Proteins/genetics , Retina/abnormalities
5.
Neuropediatrics ; 53(3): 195-199, 2022 06.
Article in English | MEDLINE | ID: mdl-34674207

ABSTRACT

We report on the conventional and diffusion tensor imaging (DTI) findings of a 2-year-old child with clinical presentation of Joubert's Syndrome (JS) and brainstem structural abnormalities as depicted by neuroimaging.Conventional magnetic resonance imaging (MRI) showed a "molar tooth" configuration of the brainstem. A band-like formation coursing in an apparent axial plane anterior to the interpeduncular fossa was noted and appeared to partially cover the interpeduncular fossa.DTI maps and three-dimensional (3D) tractography demonstrated a prominent red-encoded white matter bundle anterior to the midbrain. Probable aberrant course of the bilateral corticospinal tracts (CST) was also depicted. Absence of the decussation of the superior cerebellar peduncles and elongated thickened, horizontal superior cerebellar peduncle (SCP) reflecting the molar tooth sign were also shown.Our report and the review of the published cases suggest that DTI and tractography may be very helpful to differentiate between interpeduncular heterotopias and similarly located white matter bundles corroborating the underlying etiology of axonal guidance disorders in the complex group of ciliopathies including JS. Our case represents an important additional puzzle piece to explore the variability of these ciliopathies.


Subject(s)
Abnormalities, Multiple , Ciliopathies , Eye Abnormalities , Kidney Diseases, Cystic , Nervous System Malformations , Abnormalities, Multiple/pathology , Cerebellum/abnormalities , Cerebellum/pathology , Child, Preschool , Ciliopathies/pathology , Diffusion Tensor Imaging , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/pathology , Humans , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/pathology , Nervous System Malformations/pathology , Retina/abnormalities
6.
Neuropediatrics ; 53(3): 159-166, 2022 06.
Article in English | MEDLINE | ID: mdl-35038753

ABSTRACT

A 4-year-old boy presented with subacute onset of cerebellar ataxia. Neuroimaging revealed cerebellar atrophy. Metabolic screening tests aiming to detect potentially treatable ataxias showed an increased value (fourfold upper limit of normal) for phytanic acid and elevated very-long-chain fatty acid (VLCFA) ratios (C24:0/C22:0 and C26:0/C22:0), while absolute concentrations of VLCFA were normal. Genetic analysis identified biallelic variants in PEX10. Immunohistochemistry confirmed pathogenicity in the patients' cultured fibroblasts demonstrating peroxisomal mosaicism with a general catalase import deficiency as well as conspicuous peroxisome morphology as an expression of impaired peroxisomal function. We describe for the first time an elongated peroxisome morphology in a patient with PEX10-related cerebellar ataxia.A literature search yielded 14 similar patients from nine families with PEX10-related cerebellar ataxia, most of them presenting their first symptoms between 3 and 8 years of age. In 11/14 patients, the first and main symptom was cerebellar ataxia; in three patients, it was sensorineural hearing impairment. Finally, all 14 patients developed ataxia. Polyneuropathy (9/14) and cognitive impairment (9/14) were common associated findings. In 12/13 patients brain MRI showed cerebellar atrophy. Phytanic acid was elevated in 8/12 patients, while absolute concentrations of VLCFA levels were in normal limits in several patients. VLCFA ratios (C24:0/C22:0 and/or C26:0/C22:0), though, were elevated in 11/11 cases. We suggest including measurement of phytanic acid and VLCFA ratios in metabolic screening tests in unexplained autosomal recessive ataxias with cerebellar atrophy, especially when there is an early onset and symptoms are mild.


Subject(s)
Cerebellar Ataxia , Ataxia/genetics , Atrophy , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Child, Preschool , Genetic Testing , Humans , Male , Peroxins/genetics , Phytanic Acid , Receptors, Cytoplasmic and Nuclear/genetics
7.
Childs Nerv Syst ; 38(5): 977-984, 2022 05.
Article in English | MEDLINE | ID: mdl-35305115

ABSTRACT

PURPOSE: Few studies report radiologic and clinical outcome of post-hemorrhagic isolated fourth ventricle (IFV) with focus on surgical versus conservative management in neonates and children. Our aim is to investigate differences in radiological and clinical findings of IFV between patients who had surgical intervention versus patients who were treated conservatively. METHODS: A retrospective analysis of patients diagnosed with IFV was performed. Data included demographics, clinical exam findings, surgical history, and imaging findings (dilated FV extent, supratentorial ventricle dilation, brainstem and cerebellar deformity, tectal plate elevation, basal cistern and cerebellar hemisphere effacement, posterior fossa upward/downward herniation). RESULTS: Sixty-four (30 females) patients were included. Prematurity was 94% with 90% being < 28 weeks of gestation. Mean age at first ventricular shunt was 3.6 (range 1-19); at diagnosis of IFV, post-lateral ventricular shunting was 26.2 (1-173) months. Conservatively treated patients were 87.5% versus 12.5% treated with FV shunt/endoscopic fenestration. Severe FV dilation (41%), severe deformity of brainstem (39%) and cerebellum (47%) were noted at initial diagnosis and stable findings (34%, 47%, and 52%, respectively) were seen at last follow-up imaging. FV dilation (p = 0.0001) and upward herniation (p = 0.01) showed significant differences between surgery versus conservative management. No other radiologic or clinical outcome parameters were different between two groups. CONCLUSION: Only radiologic outcome results showed stable or normal FV dilation and stable or decreased upward herniation in the surgically treated group.


Subject(s)
Fourth Ventricle , Hydrocephalus , Brain Stem , Child , Female , Fourth Ventricle/diagnostic imaging , Fourth Ventricle/surgery , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/etiology , Hydrocephalus/surgery , Infant, Newborn , Male , Retrospective Studies , Tomography, X-Ray Computed
8.
Genet Med ; 23(2): 341-351, 2021 02.
Article in English | MEDLINE | ID: mdl-33024317

ABSTRACT

PURPOSE: This study aimed to delineate the genetic basis of congenital ocular motor apraxia (COMA) in patients not otherwise classifiable. METHODS: We compiled clinical and neuroimaging data of individuals from six unrelated families with distinct clinical features of COMA who do not share common diagnostic characteristics of Joubert syndrome or other known genetic conditions associated with COMA. We used exome sequencing to identify pathogenic variants and functional studies in patient-derived fibroblasts. RESULTS: In 15 individuals, we detected familial as well as de novo heterozygous truncating causative variants in the Suppressor of Fused (SUFU) gene, a negative regulator of the Hedgehog (HH) signaling pathway. Functional studies showed no differences in cilia occurrence, morphology, or localization of ciliary proteins, such as smoothened. However, analysis of expression of HH signaling target genes detected a significant increase in the general signaling activity in COMA patient-derived fibroblasts compared with control cells. We observed higher basal HH signaling activity resulting in increased basal expression levels of GLI1, GLI2, GLI3, and Patched1. Neuroimaging revealed subtle cerebellar changes, but no full-blown molar tooth sign. CONCLUSION: Taken together, our data imply that the clinical phenotype associated with heterozygous truncating germline variants in SUFU is a forme fruste of Joubert syndrome.


Subject(s)
Cogan Syndrome , Hedgehog Proteins , Apraxias/congenital , Hedgehog Proteins/genetics , Humans , Kruppel-Like Transcription Factors , Repressor Proteins
9.
Genet Med ; 22(10): 1589-1597, 2020 10.
Article in English | MEDLINE | ID: mdl-32820246

ABSTRACT

PURPOSE: Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. METHODS: Retrospective case series of 20 patients. RESULTS: Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. CONCLUSION: We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.


Subject(s)
Epilepsy , Spasms, Infantile , Dietary Supplements , Humans , Infant, Newborn , Retrospective Studies , Uridine
10.
BMC Med Genet ; 21(1): 153, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32698785

ABSTRACT

BACKGROUND: NAA10 is the catalytic subunit of the major N-terminal acetyltransferase complex NatA which acetylates almost half the human proteome. Over the past decade, many NAA10 missense variants have been reported as causative of genetic disease in humans. Individuals harboring NAA10 variants often display variable degrees of intellectual disability (ID), developmental delay, and cardiac anomalies. Initially, carrier females appeared to be oligo- or asymptomatic with X-inactivation pattern skewed towards the wild type allele. However, recently it has been shown that NAA10 variants can cause syndromic or non-syndromic intellectual disability in females as well. The impact of specific NAA10 variants and the X-inactivation pattern on the individual phenotype in females remains to be elucidated. CASE PRESENTATION: Here we present a novel de novo NAA10 (NM_003491.3) c.[47A > C];[=] (p.[His16Pro];[=]) variant identified in a young female. The 10-year-old girl has severely delayed motor and language development, disturbed behavior with hyperactivity and restlessness, moderate dilatation of the ventricular system and extracerebral CSF spaces. Her blood leukocyte X-inactivation pattern was skewed (95/5) towards the maternally inherited X-chromosome. Our functional study indicates that NAA10 p.(H16P) impairs NatA complex formation and NatA catalytic activity, while monomeric NAA10 catalytic activity appears to be intact. Furthermore, cycloheximide experiments show that the NAA10 H16P variant does not affect the cellular stability of NAA10. DISCUSSION AND CONCLUSIONS: We demonstrate that NAA10 p.(His16Pro) causes a severe form of syndromic ID in a girl most likely through impaired NatA-mediated Nt-acetylation of cellular proteins. X-inactivation analyses showed a skewed X-inactivation pattern in DNA from blood of the patient with the maternally inherited allele being preferentially methylated/inactivated.


Subject(s)
Intellectual Disability/genetics , Mutation/genetics , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , X Chromosome Inactivation/genetics , Amino Acid Sequence , Biocatalysis , Child , Cycloheximide/metabolism , Female , HeLa Cells , Heterozygote , Humans , Male , N-Terminal Acetyltransferase A/chemistry , N-Terminal Acetyltransferase E/chemistry , Pedigree , Syndrome
11.
Cerebellum ; 19(4): 569-582, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32410094

ABSTRACT

Pontocerebellar hypoplasias (PCH) represent a heterogeneous group of very rare disorders with reduced volume of pons and cerebellum. The term is purely descriptive and does not imply a genetic progressive disease. Currently (as of Jan 01, 2020), 13 different types are listed in OMIM (Online Mendelian Inheritance in Man), associated with 19 different genes. However, a large group of similar imaging patterns is known, and it is unclear why some are labeled as PCH, while others are not. The latter include CASK- and VLDLR-associated disorders, some tubulinopathies, certain dystroglycanopathies, a few congenital disorders of glycosylation (CDG) syndromes, several forms associated with rare variants (e.g., DCK1, WDR81, ITPR1), and "cerebellar disruption of prematurity"-an acquired etiology. The objective of this paper is to elaborate a pattern recognition approach, mainly imaging-based, to facilitate a timely and accurate diagnosis, to narrow the differential diagnosis, and to enable targeted additional (genetic) investigations. We describe magnetic resonance imaging (MRI) findings and offer "checklists" for infratentorial findings (e.g., non-lobulated vermis, dragonfly pattern of the cerebellum, cerebellar cysts, brainstem kinking, longitudinal grooves along the brainstem, flat pons) as well as for supratentorial anomalies (e.g., agenesis of corpus callosum, optic atrophy, simplified gyral pattern, and hypomyelination). The clinical context and laboratory investigations need to be considered as well. We also provide a "checklist" for clinical features. A systematic analysis of imaging and clinical features can assist in narrowing the differential diagnosis and permitting more targeted genetic testing. Some imaging patterns are diagnostic.


Subject(s)
Cerebellar Diseases/diagnostic imaging , Neuroimaging/methods , Humans
12.
Am J Med Genet A ; 182(12): 2971-2975, 2020 12.
Article in English | MEDLINE | ID: mdl-32918381

ABSTRACT

Mild clinical phenotypes of ataxia-telangiectasia (variant A-T) are associated with biallelic ATM variants resulting in residual function of the ATM kinase. At least one regulatory, missense, or leaky splice site mutation resulting in expression of ATM with low level kinase activity was identified in subjects with variant A-T. Studies on the pathogenicity of the germline splicing ATM variant c.1066-6T>G have provided conflicting results. Using whole-exome sequencing, we identified two splice site ATM variants, c.1066-6T>G; [p.?], and c.2250G>A, [p.Ile709_Lys750del], in a compound heterozygous state in a 27-year-old woman who had been diagnosed as having congenital ocular motor apraxia type Cogan in her childhood. Reappraisal of her clinical phenotype revealed consistency with variant A-T. Functional analyses showed reduced expression of ATM protein and residual activity of the ATM kinase at a level consistent with variant A-T. Our results provide evidence for pathogenicity of the leaky ATM splice site variant c.1066-6T>G.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/pathology , Genetic Predisposition to Disease , Mutation , RNA Splicing/genetics , Adult , Ataxia Telangiectasia/genetics , Female , Humans , Phenotype
13.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Article in English | MEDLINE | ID: mdl-31710777

ABSTRACT

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Subject(s)
Abnormalities, Multiple/epidemiology , Cerebellum/abnormalities , Eye Abnormalities/epidemiology , Health Personnel , Kidney Diseases, Cystic/epidemiology , Neurodevelopmental Disorders/epidemiology , Retina/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Abnormalities, Multiple/therapy , Brain Stem/pathology , Cerebellum/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/therapy , Health Planning Guidelines , Humans , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/therapy , Liver/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/therapy , Retina/pathology
14.
Brain ; 142(8): 2230-2237, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31332433

ABSTRACT

Superoxide dismutase 1 (SOD1) is the principal cytoplasmic superoxide dismutase in humans and plays a major role in redox potential regulation. It catalyses the transformation of the superoxide anion (O2•-) into hydrogen peroxide. Heterozygous variants in SOD1 are a common cause of familial amyotrophic lateral sclerosis. In this study we describe the homozygous truncating variant c.335dupG (p.C112Wfs*11) in SOD1 that leads to total absence of enzyme activity. The resulting phenotype is severe and marked by progressive loss of motor abilities, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Heterozygous carriers have a markedly reduced enzyme activity when compared to wild-type controls but show no overt neurologic phenotype. These results are in contrast with the previously proposed theory that a loss of function is the underlying mechanism in SOD1-related motor neuron disease and should be considered before application of previously proposed SOD1 silencing as a treatment option for amyotrophic lateral sclerosis.


Subject(s)
Heredodegenerative Disorders, Nervous System/genetics , Superoxide Dismutase-1/deficiency , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis , Child , Child, Preschool , Frameshift Mutation , Humans , Male , Pedigree , Syndrome
15.
PLoS Genet ; 13(4): e1006746, 2017 04.
Article in English | MEDLINE | ID: mdl-28453519

ABSTRACT

Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.


Subject(s)
Cell Movement/genetics , Frameshift Mutation/genetics , Intellectual Disability/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Animals , Cytoskeleton/genetics , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/pathology , Magnetic Resonance Imaging , Male , Mesencephalon/diagnostic imaging , Mesencephalon/pathology , Mice , Pedigree , Rhombencephalon/diagnostic imaging , Rhombencephalon/pathology , Signal Transduction , rhoA GTP-Binding Protein/genetics
16.
Eur Radiol ; 29(2): 770-782, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30066250

ABSTRACT

OBJECTIVES: To describe the spectrum of brainstem malformations associated to mutations in the tubulin genes taking advantage of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). METHODS: Fifteen patients (six males; median age, 1.25 years; range, 1 month to 31 years) with mutations in the tubulin genes (TUBA1A = 8, TUBB2B = 4, TUBB3 = 3) studied with MRI and DTI were included in the study. Brain MR exams were reviewed to describe the malformative aspects of the brainstem. Malformations of the supratentorial brain and cerebellum were also recorded. Tractography was performed in seven selected cases. RESULTS: Fourteen patients (93%) showed complex malformations of the brainstem. Most common findings, apparent on anatomical MR sequences, were brainstem asymmetry (12 cases, 5 of which with a crossed pattern characterised by a hypertrophic right medulla oblongata and hypertrophic left pons), short and small pons on midline (10 cases) and anterior brainstem clefting (6 cases). DTI revealed abnormal transverse pontine fibres (13 cases), fusion of corticospinal tracts and medial lemnisci (9 cases) and a small decussation of the superior cerebellar peduncles (7 cases). CONCLUSIONS: Conventional/anatomical MRI and DTI reveal a complex pattern of brainstem malformations associated with tubulin genes mutations. KEY POINTS: • Brainstem malformations affect 93% patients with mutated tubulin genes • MRI shows homolateral and crossed brainstem asymmetries, clefts and pons hypoplasia • DTI demonstrates irregular representation of transverse pontine fibres and fusion of corticospinal tracts.


Subject(s)
Brain Stem/abnormalities , Brain Stem/diagnostic imaging , Mutation , Tubulin/genetics , Adult , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Child , Diffusion Tensor Imaging/methods , Female , Humans , Infant , Magnetic Resonance Imaging/methods , Male , Pons/abnormalities , Pons/diagnostic imaging , Pyramidal Tracts/pathology , White Matter/abnormalities , White Matter/diagnostic imaging
17.
Neuropediatrics ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776977
18.
Am J Hum Genet ; 97(6): 855-61, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26581903

ABSTRACT

Hereditary ataxias comprise a group of genetically heterogeneous disorders characterized by clinically variable cerebellar dysfunction and accompanied by involvement of other organ systems. The molecular underpinnings for many of these diseases are widely unknown. Previously, we discovered the disruption of Scyl1 as the molecular basis of the mouse mutant mdf, which is affected by neurogenic muscular atrophy, progressive gait ataxia with tremor, cerebellar vermis atrophy, and optic-nerve thinning. Here, we report on three human individuals, from two unrelated families, who presented with recurrent episodes of acute liver failure in early infancy and are affected by cerebellar vermis atrophy, ataxia, and peripheral neuropathy. By whole-exome sequencing, compound-heterozygous mutations within SCYL1 were identified in all affected individuals. We further show that in SCYL1-deficient human fibroblasts, the Golgi apparatus is massively enlarged, which is in line with the concept that SCYL1 regulates Golgi integrity. Thus, our findings define SCYL1 mutations as the genetic cause of a human hepatocerebellar neuropathy syndrome.


Subject(s)
Cerebellar Ataxia/genetics , Hepatolenticular Degeneration/genetics , Liver Failure/genetics , Mutation , Peripheral Nervous System Diseases/genetics , Transcription Factors/genetics , Adaptor Proteins, Vesicular Transport , Adolescent , Base Sequence , Cerebellar Ataxia/pathology , DNA-Binding Proteins , Exome , Female , Gene Expression , Hepatolenticular Degeneration/pathology , Heterozygote , Humans , Liver Failure/pathology , Male , Molecular Sequence Data , Pedigree , Peripheral Nervous System Diseases/pathology , Sequence Analysis, DNA , Syndrome , Young Adult
19.
Radiographics ; 38(3): 912-931, 2018.
Article in English | MEDLINE | ID: mdl-29757724

ABSTRACT

Although individual cases of inherited metabolic disorders are rare, overall they account for a substantial number of disorders affecting the central nervous system. Organic acidemias and aminoacidopathies include a variety of inborn errors of metabolism that are caused by defects in the intermediary metabolic pathways of carbohydrates, amino acids, and fatty acid oxidation. These defects can lead to the abnormal accumulation of organic acids and amino acids in multiple organs, including the brain. Early diagnosis is mandatory to initiate therapy and prevent permanent long-term neurologic impairments or death. Neuroimaging findings can be nonspecific, and metabolism- and genetics-based laboratory investigations are needed to confirm the diagnosis. However, neuroimaging has a key role in guiding the diagnostic workup. The findings at conventional and advanced magnetic resonance imaging may suggest the correct diagnosis, help narrow the differential diagnosis, and consequently facilitate early initiation of targeted metabolism- and genetics-based laboratory investigations and treatment. Neuroimaging may be especially helpful for distinguishing organic acidemias and aminoacidopathies from other more common diseases with similar manifestations, such as hypoxic-ischemic injury and neonatal sepsis. Therefore, it is important that radiologists, neuroradiologists, pediatric neuroradiologists, and clinicians are familiar with the neuroimaging findings of organic acidemias and aminoacidopathies. ©RSNA, 2018.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Brain Diseases/diagnostic imaging , Neuroimaging/methods , Child , Child, Preschool , Diagnosis, Differential , Early Diagnosis , Humans , Infant , Infant, Newborn
20.
Neuropediatrics ; 49(4): 262-268, 2018 08.
Article in English | MEDLINE | ID: mdl-29791933

ABSTRACT

Basal ganglia infarction in young children, mostly after mild head trauma, has been repeatedly reported. The pathogenesis and the risk factors are not fully understood. Lenticulostriate vasculopathy, usually referred to as basal ganglia calcification, is discussed as one of them. We describe five young (7-13 months old on presentation) male children who suffered from hemiparesis due to ischemic stroke of the basal ganglia, four of them after minor head trauma. All of them had calcification in the basal ganglia visible on computed tomography or cranial ultrasound but not on magnetic resonance imaging. Follow-up care was remarkable for recurrent infarction in three patients. One patient had a second symptomatic stroke on the contralateral side, and two patients showed new asymptomatic infarctions in the contralateral basal ganglia on imaging. In view of the scant literature, this clinic-radiologic entity seems under recognized. We review the published cases and hypothesize that male sex and iron deficiency anemia are risk factors for basal ganglia stroke after minor trauma in the context of basal ganglia calcification in infants. We suggest to perform appropriate targeted neuroimaging in case of infantile basal ganglia stroke, and to consider prophylactic medical treatment, although its value in this context is not proven.


Subject(s)
Basal Ganglia Cerebrovascular Disease/complications , Brain Ischemia/diagnosis , Brain Ischemia/etiology , Craniocerebral Trauma/complications , Stroke/diagnosis , Stroke/etiology , Basal Ganglia/diagnostic imaging , Basal Ganglia Cerebrovascular Disease/diagnostic imaging , Basal Ganglia Cerebrovascular Disease/therapy , Brain Ischemia/therapy , Craniocerebral Trauma/diagnostic imaging , Craniocerebral Trauma/therapy , Diagnosis, Differential , Humans , Infant , Male , Paresis/diagnostic imaging , Paresis/etiology , Paresis/therapy , Retrospective Studies , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL