Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Chem Biol ; 17(3): 280-290, 2021 03.
Article in English | MEDLINE | ID: mdl-33462494

ABSTRACT

Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.


Subject(s)
Cell Cycle Proteins/genetics , Epidermis/drug effects , Re-Epithelialization/drug effects , Skin Ulcer/drug therapy , Small Molecule Libraries/pharmacology , Transcription Factors/genetics , Wounds, Nonpenetrating/drug therapy , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/antagonists & inhibitors , Protein Precursors/genetics , Protein Precursors/metabolism , Re-Epithelialization/genetics , Skin Ulcer/genetics , Skin Ulcer/metabolism , Skin Ulcer/pathology , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic , Wounds, Nonpenetrating/genetics , Wounds, Nonpenetrating/metabolism , Wounds, Nonpenetrating/pathology
2.
J Mammary Gland Biol Neoplasia ; 27(2): 145-153, 2022 06.
Article in English | MEDLINE | ID: mdl-35739379

ABSTRACT

Treatment of metastasis remains a clinical challenge and the majority of breast cancer-related deaths are the result of drug-resistant metastases. The protein tyrosine phosphatase SHP2 encoded by the proto-oncogene PTPN11 promotes breast cancer progression. Inhibition of SHP2 has been shown to decrease metastases formation in various breast cancer models, but specific downstream effectors of SHP2 remain poorly characterized. Certain cytokines in the metastatic cascade facilitate local invasion and promote metastatic colonization. In this study, we investigated cytokines affected by SHP2 that could be relevant for its pro-tumorigenic properties. We used a cytokine array to investigate differentially released cytokines in the supernatant of SHP2 inhibitor-treated breast cancer cells. Expression of CXCL8 transcripts and protein abundance were assessed in human breast cancer cell lines in which we blocked SHP2 using shRNA constructs or an allosteric inhibitor. The impact of SHP2 inhibition on the phospho-tyrosine-proteome and signaling was determined using mass spectrometry. From previously published RNAseq data (Aceto et al. in Nat. Med. 18:529-37, 2012), we computed transcription factor activities using an integrated system for motif activity response analysis (ISMARA) (Balwierz et al. in Genome Res. 24:869-84, 2014). Finally, using siRNA against ETS1, we investigated whether ETS1 directly influences CXCL8 expression levels. We found that IL-8 is one of the most downregulated cytokines in cell supernatants upon SHP2 blockade, with a twofold decrease in CXCL8 transcripts and a fourfold decrease in IL-8 protein. These effects were also observed in preclinical tumor models. Analysis of the phospho-tyrosine-proteome revealed that several effectors of the mitogen-activated protein kinase (MAPK) pathway are downregulated upon SHP2 inhibition in vitro. MEK1/2 inhibition consistently reduced IL-8 levels in breast cancer cell supernatants. Computational analysis of RNAseq data from SHP2-depleted tumors revealed reduced activity of the transcription factor ETS1, a direct target of ERK and a transcription factor reported to regulate IL-8 expression. Our work reveals that SHP2 mediates breast cancer progression by enhancing the production and secretion of the pro-metastatic cytokine IL-8. We also provide mechanistic insights into the effects of SHP2 inhibition and its downstream repercussions. Overall, these results support a rationale for targeting SHP2 in breast cancer.


Subject(s)
Breast Neoplasms , Interleukin-8 , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Proteome , Transcription Factors , Tyrosine
3.
EMBO Rep ; 19(9)2018 09.
Article in English | MEDLINE | ID: mdl-30126924

ABSTRACT

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Subject(s)
Autophagy/physiology , Lipid Mobilization/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , Autophagosomes/metabolism , Autophagy/genetics , Autophagy-Related Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Endoplasmic Reticulum/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , HeLa Cells , Homeostasis , Humans , Lentivirus , Lipid Droplets/metabolism , Lipid Mobilization/genetics , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism
4.
Breast Cancer Res ; 18(1): 41, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27048245

ABSTRACT

BACKGROUND: The PI3K pathway is hyperactivated in many cancers, including 70 % of breast cancers. Pan- and isoform-specific inhibitors of the PI3K pathway are currently being evaluated in clinical trials. However, the clinical responses to PI3K inhibitors when used as single agents are not as efficient as expected. METHODS: In order to anticipate potential molecular mechanisms of resistance to the p110α isoform-selective inhibitor BYL719, we developed resistant breast cancer cell lines, assessed the concomitant changes in cellular signaling pathways using unbiased phosphotyrosine proteomics and characterized the mechanism of resistance using pharmacological inhibitors. RESULTS: We found an increase in IGF1R, IRS1/IRS2 and p85 phosphorylation in the resistant lines. Co-immunoprecipitation experiments identified an IGF1R/IRS/p85/p110ß complex that causes the activation of AKT/mTOR/S6K and stifles the effects of BYL719. Pharmacological inhibition of members of this complex reduced mTOR/S6K activation and restored sensitivity to BYL719. CONCLUSION: Our study demonstrates that the IGF1R/p110ß/AKT/mTOR axis confers resistance to BYL719 in PIK3CA mutant breast cancers. This provides a rationale for the combined targeting of p110α with IGF1R or p110ß in patients with breast tumors harboring PIK3CA mutations.


Subject(s)
Breast Neoplasms/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Somatomedin/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Class Ia Phosphatidylinositol 3-Kinase/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , TOR Serine-Threonine Kinases/genetics , Thiazoles/administration & dosage , Xenograft Model Antitumor Assays
5.
Nat Commun ; 15(1): 4584, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811577

ABSTRACT

Stimulator of interferon genes (STING) is a central component of the cytosolic nucleic acids sensing pathway and as such master regulator of the type I interferon response. Due to its critical role in physiology and its' involvement in a variety of diseases, STING has been a focus for drug discovery. Targeted protein degradation (TPD) has emerged as a promising pharmacology for targeting previously considered undruggable proteins by hijacking the cellular ubiquitin proteasome system (UPS) with small molecules. Here, we identify AK59 as a STING degrader leveraging HERC4, a HECT-domain E3 ligase. Additionally, our data reveals that AK59 is effective on the common pathological STING mutations, suggesting a potential clinical application of this mechanism. Thus, these findings introduce HERC4 to the fields of TPD and of compound-induced degradation of STING, suggesting potential therapeutic applications.


Subject(s)
Membrane Proteins , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Proteolysis/drug effects , HEK293 Cells , Animals , Mutation , Proteasome Endopeptidase Complex/metabolism , Ubiquitination
6.
Cancers (Basel) ; 14(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35740644

ABSTRACT

The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.

7.
Blood Cancer J ; 12(7): 110, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853853

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM. RNA-seq analysis of acute leukemia and MM cells revealed both unique and common signaling pathways affected by BRD9 degradation, with common pathways including those associated with regulation of inflammation, cell adhesion, DNA repair and cell cycle progression. Degradation of BRD9 potentiated the effects of several chemotherapeutic agents and targeted therapies against AML, ALL, and MM. Our findings support further development of therapeutic targeting of BRD9, alone or combined with other agents, as a novel strategy for acute leukemias and MM.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Multiple Myeloma , Transcription Factors , Antineoplastic Agents/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , RNA Interference , Transcription Factors/genetics , Transcription Factors/metabolism
8.
ACS Pharmacol Transl Sci ; 4(1): 327-337, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615182

ABSTRACT

Asparagine deprivation by l-asparaginase (L-ASNase) is an effective therapeutic strategy in acute lymphoblastic leukemia, with resistance occurring due to upregulation of ASNS, the only human enzyme synthetizing asparagine (Annu. Rev. Biochem. 2006, 75 (1), 629-654). l-Asparaginase efficacy in solid tumors is limited by dose-related toxicities (OncoTargets and Therapy 2017, pp 1413-1422). Large-scale loss of function genetic in vitro screens identified ASNS as a cancer dependency in several solid malignancies (Cell 2017, 170 (3), 564-576.e16. Cell 2017, 170 (3), 577-592.e10). Here we evaluate the therapeutic potential of targeting ASNS in melanoma cells. While we confirm in vitro dependency on ASNS silencing, this is largely dispensable for in vivo tumor growth, even in the face of asparagine deprivation, prompting us to characterize such a resistance mechanism to devise novel therapeutic strategies. Using ex vivo quantitative proteome and transcriptome profiling, we characterize the compensatory mechanism elicited by ASNS knockout melanoma cells allowing their survival. Mechanistically, a genome-wide CRISPR screen revealed that such a resistance mechanism is elicited by a dual axis: GCN2-ATF4 aimed at restoring amino acid levels and MAPK-BCLXL to promote survival. Importantly, pharmacological inhibition of such nodes synergizes with l-asparaginase-mediated asparagine deprivation in ASNS deficient cells suggesting novel potential therapeutic combinations in melanoma.

9.
Elife ; 82019 11 19.
Article in English | MEDLINE | ID: mdl-31741433

ABSTRACT

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Cullin Proteins , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Methionyl Aminopeptidases/metabolism , Mice , Mice, Nude , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcriptome , Ubiquitin-Protein Ligases/genetics , YAP-Signaling Proteins , rhoA GTP-Binding Protein/metabolism
10.
Subcell Biochem ; 43: 323-38, 2007.
Article in English | MEDLINE | ID: mdl-17953401

ABSTRACT

Since the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems. In this chapter, we review the current applications of photonics and imaging to proteomics from 2D gels analysis to molecular imaging.


Subject(s)
Photons , Proteomics , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry
11.
EMBO Mol Med ; 10(4)2018 04.
Article in English | MEDLINE | ID: mdl-29438985

ABSTRACT

The clinical management of metastatic colorectal cancer (mCRC) faces major challenges. Here, we show that nilotinib, a clinically approved drug for chronic myeloid leukaemia, strongly inhibits human CRC cell invasion in vitro and reduces their metastatic potential in intrasplenic tumour mouse models. Nilotinib acts by inhibiting the kinase activity of DDR1, a receptor tyrosine kinase for collagens, which we identified as a RAS-independent inducer of CRC metastasis. Using quantitative phosphoproteomics, we identified BCR as a new DDR1 substrate and demonstrated that nilotinib prevents DDR1-mediated BCR phosphorylation on Tyr177, which is important for maintaining ß-catenin transcriptional activity necessary for tumour cell invasion. DDR1 kinase inhibition also reduced the invasion of patient-derived metastatic and circulating CRC cell lines. Collectively, our results indicate that the targeting DDR1 kinase activity with nilotinib may be beneficial for patients with mCRC.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Discoidin Domain Receptor 1/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-bcr/metabolism , Receptors, Collagen/metabolism , Animals , Discoidin Domain Receptor 1/genetics , HCT116 Cells , HEK293 Cells , Humans , Mice , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-bcr/genetics , Pyrimidines/pharmacology , Receptors, Collagen/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
12.
Science ; 351(6278): 1199-203, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26847545

ABSTRACT

SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56ß, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.


Subject(s)
Autism Spectrum Disorder/drug therapy , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Amino Acid Sequence , Animals , Autism Spectrum Disorder/enzymology , Autism Spectrum Disorder/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , Humans , Insulin-Like Growth Factor I/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Microfilament Proteins , Molecular Sequence Data , Multiprotein Complexes/metabolism , Neurons/enzymology , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Oncotarget ; 6(11): 9173-88, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25823819

ABSTRACT

The epidermal growth factor receptor (EGFR) contributes to the pathogenesis of head&neck squamous cell carcinoma (HNSCC). However, only a subset of HNSCC patients benefit from anti-EGFR targeted therapy. By performing an unbiased proteomics screen, we found that the calcium-activated chloride channel ANO1 interacts with EGFR and facilitates EGFR-signaling in HNSCC. Using structural mutants of EGFR and ANO1 we identified the trans/juxtamembrane domain of EGFR to be critical for the interaction with ANO1. Our results show that ANO1 and EGFR form a functional complex that jointly regulates HNSCC cell proliferation. Expression of ANO1 affected EGFR stability, while EGFR-signaling elevated ANO1 protein levels, establishing a functional and regulatory link between ANO1 and EGFR. Co-inhibition of EGFR and ANO1 had an additive effect on HNSCC cell proliferation, suggesting that co-targeting of ANO1 and EGFR could enhance the clinical potential of EGFR-targeted therapy in HNSCC and might circumvent the development of resistance to single agent therapy. HNSCC cell lines with amplification and high expression of ANO1 showed enhanced sensitivity to Gefitinib, suggesting ANO1 overexpression as a predictive marker for the response to EGFR-targeting agents in HNSCC therapy. Taken together, our results introduce ANO1 as a promising target and/or biomarker for EGFR-directed therapy in HNSCC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Chloride Channels/metabolism , ErbB Receptors/metabolism , Head and Neck Neoplasms/pathology , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Anoctamin-1 , Cell Line, Tumor , Cell Proliferation , Chloride Channels/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Fusion Regulatory Protein 1, Heavy Chain/genetics , Gefitinib , HEK293 Cells , Humans , Multiprotein Complexes/metabolism , Mutation/genetics , Neoplasm Proteins/genetics , Protein Structure, Tertiary/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction , Squamous Cell Carcinoma of Head and Neck
14.
Cancer Res ; 73(17): 5320-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23867476

ABSTRACT

The HER2 gene is amplified and overexpressed in approximately 20% of invasive breast cancers where it is associated with metastasis and poor prognosis. Here, we describe a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells that evokes aggressive breast cancer phenotypes. Delta-HER2 overexpression in mammary epithelial cells was sufficient to reduce apoptosis, increase proliferation, and induce expression of mesenchymal markers, features that were associated with greater invasive potential in three-dimensional cultures in vitro and more aggressive tumorigenicity and metastasis in vivo. In contrast, overexpression of wild-type HER2 was insufficient at evoking such effects. Unbiased protein-tyrosine phosphorylation profiling in Delta-HER2-expressing cells revealed increased phosphorylation of several signaling proteins not previously known to be controlled by the HER2 pathway. Furthermore, microarray expression analysis revealed activation of genes known to be highly expressed in ER-negative, high-grade, and metastatic primary breast tumors. Together, our results provide mechanistic insights into the activity of a highly pathogenic splice variant of HER2.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/secondary , Cell Movement , Lung Neoplasms/secondary , Mammary Neoplasms, Animal/pathology , Phosphotyrosine/metabolism , Receptor, ErbB-2/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast/cytology , Breast/metabolism , Breast Neoplasms/genetics , Cell Culture Techniques , Cell Cycle , Cell Proliferation , Cell Transformation, Neoplastic , Cells, Cultured , Chromatography, Liquid , Epithelial-Mesenchymal Transition , Female , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Mammary Neoplasms, Animal/genetics , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
15.
Cancer Discov ; 2(6): 512-523, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22684457

ABSTRACT

Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type II inhibition acts in the opposite manner, leading to a loss of activation loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation loop may or may not be elicited.


Subject(s)
Janus Kinases/antagonists & inhibitors , Janus Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Mice , Phosphorylation/drug effects , Protein Binding , Protein Structure, Tertiary , STAT5 Transcription Factor/metabolism
16.
Cancer Res ; 70(10): 4151-62, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20460524

ABSTRACT

Members of the fibroblast growth factor receptor (FGFR) family have essential roles in normal physiology and in cancer where they control diverse processes. FGFRs have been associated with breast cancer development. Thus, models to study the role of FGFR in breast cancer and their targeting potential are important. We present an in vitro and in vivo analysis of FGFRs in the breast cancer model cell lines 67NR and 4T1. We show that both tumor cell lines coexpress FGFRs and ligands and display autocrine FGFR signaling activity. Fibroblast growth factor receptor substrate 2 (FRS2), a downstream mediator of FGFR, is constitutively tyrosine phosphorylated and multiple signaling pathways are active. Treatment of 67NR and 4T1 cultures with TKI258, an FGFR tyrosine kinase inhibitor (TKI), caused a rapid decrease in FRS2 phosphorylation; decreased the activity of extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and phospholipase Cgamma; and blocked proliferation of both tumor lines. Furthermore, TKI258 induced 4T1 apoptotic cell death via blockade of the phosphoinositide 3-kinase/AKT pathway. In vivo, one dose of TKI258 rapidly lowered FRS2 phosphorylation and ERK1/2 and AKT activity in mammary tumors. Long-term TKI258 treatment of 4T1 tumor- and 67NR tumor-bearing mice had a significant effect on primary tumor outgrowth and 4T1 tumor-induced lung metastases. A microarray analysis was carried out to identify targets with roles in TKI258 antitumor activity and potential prognostic markers in human breast tumors. Of interest are the downregulated matrix metalloproteases (MMP), in particular MMP9, which is essential for metastatic spread of 4T1 tumors.


Subject(s)
Apoptosis , Lung Neoplasms/prevention & control , Mammary Neoplasms, Experimental/prevention & control , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Movement , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Profiling , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oligonucleotide Array Sequence Analysis , Phospholipase C gamma/metabolism , Phosphorylation , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Tumor Cells, Cultured , Tyrosine/metabolism
17.
Rapid Commun Mass Spectrom ; 22(23): 3743-53, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18980262

ABSTRACT

The Saccharomyces cerevisae nitrogen permease reactivator Npr1 is a hyperphosphorylated protein that belongs to a fungus-specific family of Ser/Thr protein kinases dedicated to the regulation of plasma membrane transporters. Its activity is regulated by the TOR (target of rapamycin) signalling pathway. Inhibition of the TOR proteins by treating yeast cells with the immunosuppressant drug rapamycin promotes rapid dephosphorylation of Npr1. To identify the rapamycin-sensitive phosphorylation sites in yeast Npr1, glutathione-S-transferase (GST)-tagged Npr1 was isolated from untreated or rapamycin-treated cells, and analyzed by mass spectrometry. Here, we report for the first time 22 phosphorylation sites that are clustered in two regions of the N-terminal serine-rich domain. All phosphorylation sites, except two, were found to be rapamycin-sensitive. Some phosphorylation sites are contained in motifs that closely resemble those in mammalian S6K (serines followed by a tyrosine or a phenylalanine) and 4E-BP1 (serines followed by a proline). Other sites, such as serines followed by Ala, Asn, Gln, His, Ile, Leu, or Val, appear to define new motifs. Thus, TOR controls an unusually broad array of phosphorylation sites in Npr1. In addition to phosphorylation by upstream kinases, Npr1 undergoes autophosphorylation that was mapped to three distinct serines in the N-terminal domain of which Ser257 appears to be the main autophosphorylation site. Site-directed mutagenesis confirmed the mass spectral assignments of the autophosphorylation sites and shows that Ser257 is specifically involved in forming an in vitro substrate-binding site.


Subject(s)
Protein Kinases/chemistry , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Amino Acid Sequence , Binding Sites/physiology , Chromatography, Liquid , Molecular Sequence Data , Mutagenesis, Site-Directed , Nitrogen/metabolism , Phosphorylation/drug effects , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Tandem Mass Spectrometry
18.
Mol Cell Proteomics ; 6(11): 1917-32, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17644761

ABSTRACT

The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.


Subject(s)
Cell Cycle , Histones/chemistry , Mass Spectrometry/methods , Peptides/chemistry , Protein Processing, Post-Translational , Acetylation , Amino Acid Sequence , Histones/metabolism , Humans , Isotope Labeling , Lysine/chemistry , Lysine/metabolism , Methylation , Molecular Sequence Data
19.
Mol Cell Proteomics ; 5(3): 541-52, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16319397

ABSTRACT

The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. The main histone H2B variant, H2BA, was acetylated at Lys-12, -15, and -20. The analysis of core histone subtypes with their modifications provides a first step toward an understanding of the functional significance of the diversity of histone structures.


Subject(s)
Histones/chemistry , Histones/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Chromatography, High Pressure Liquid , Histones/analysis , Humans , Jurkat Cells , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Peptides/analysis , Peptides/chemistry , Sequence Analysis, Protein
20.
Proc Natl Acad Sci U S A ; 100(3): 880-5, 2003 Feb 04.
Article in English | MEDLINE | ID: mdl-12540831

ABSTRACT

Reversible protein phosphorylation plays an important role in many cellular processes. However, a simple and reliable method to measure changes in the extent of phosphorylation is lacking. Here, we present a method to quantitate the changes in phosphorylation occurring in a protein in response to a stimulus. The method consists of three steps: (i) enzymatic digestion in H(2)16O or isotopically enriched H(2)18O to label individual pools of differentially phosphorylated proteins; (ii) affinity selection of phosphopeptides from the combined digests by immobilized metal-affinity chromatography; and (iii) dephosphorylation with alkaline phosphatase to allow for quantitation of changes of phosphorylation by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We applied this strategy to the analysis of the yeast nitrogen permease reactivator protein kinase involved in the target of rapamycin signaling pathway. Alteration in the extent of phosphorylation at Ser-353 and Ser-357 could be easily assessed and quantitated both in wild-type yeast cells treated with rapamycin and in cells lacking the SIT4 phosphatase responsible for dephosphorylating nitrogen permease reactivator protein. The method described here is simple and allows quantitation of relative changes in the level of phosphorylation in signaling proteins, thus yielding information critical for understanding the regulation of complex protein phosphorylation cascades.


Subject(s)
Mass Spectrometry/methods , Phosphorylation , Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Glutathione Transferase/metabolism , Intracellular Signaling Peptides and Proteins , Isotopes/chemistry , Models, Biological , Mutation , Peptides/chemistry , Plasmids/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Serine/metabolism , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL