Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Br J Anaesth ; 133(2): 316-325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960833

ABSTRACT

BACKGROUND: The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS: Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS: At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] µM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] µM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS: Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.


Subject(s)
Ascorbic Acid , Sepsis , Animals , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Female , Sheep , Brain Ischemia/metabolism , Disease Models, Animal , Hypoxia/metabolism , Antioxidants/pharmacology , Cerebrovascular Circulation/drug effects , Behavior, Animal/drug effects
2.
Exp Physiol ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37755233

ABSTRACT

Patients diagnosed with heart failure have high rates of mortality and morbidity. Based on promising preclinical studies, vagal nerve stimulation has been trialled in these patients using whole nerve electrical stimulation, but the results have been mixed. This is, at least in part, due to an inability to selectively recruit the activity of specific fibres within the vagus with whole nerve electrical stimulation, as well as not knowing which the 'therapeutic' fibres are. This symposium review focuses on a population of cardiac-projecting efferent vagal fibres with cell bodies located within the dorsal motor nucleus of the vagus nerve and a new method of selectively targeting these projections as a potential treatment in heart failure. NEW FINDINGS: What is the topic of this review? Selective efferent vagal stimulation in heart failure. What advances does it highlight? Selectively targeting a population of cardiac-projecting efferent vagal fibres with cell bodies within the dorsal motor nucleus of the vagus using optogenetics slows the progression of heart failure in rats.

3.
J Physiol ; 598(20): 4523-4536, 2020 10.
Article in English | MEDLINE | ID: mdl-32705685

ABSTRACT

KEY POINTS: The majority of intrapartum decelerations are widely believed to be mediated by the baroreflex secondary to brief umbilical cord occlusions (UCOs) but this remains unproven. We examined the responses to brief-UCOs in fetal sheep and compared these to a phenylephrine-stimulated baroreflex in a separate cohort. A further cohort was instrumented with near-infrared spectroscopy to measure cerebral oxygenation during UCO. The first 3-4 s of the brief-UCOs were consistent with a baroreflex, and associated with a minor fall in fetal heart rate (FHR). Thereafter, the remainder of the FHR decelerations were highly consistent with the peripheral chemoreflex. The baroreflex is not sufficient to produce deep, rapid decelerations characteristic of variable decelerations and it is therefore likely to be a minor contributor to intrapartum decelerations. ABSTRACT: Fetal heart rate (FHR) monitoring is widely used to assess fetal wellbeing during labour, yet the physiology underlying FHR patterns remains incompletely understood. The baroreflex is widely believed to mediate brief intrapartum decelerations, but evidence supporting this theory is lacking. We therefore investigated the physiological changes in near-term fetal sheep during brief repeated umbilical cord occlusions (brief-UCOs, n = 15). We compared this to separate cohorts that underwent a phenylephrine challenge to stimulate the baroreflex (n = 9) or were instrumented with near-infrared spectroscopy and underwent prolonged 15-min complete UCO (prolonged-UCO, n = 9). The first 3-4 s of brief-UCOs were associated with hypertension (P = 0.000), a fall in FHR by 9.7-16.9 bpm (P = 0.002). The FHR/MAP relationship during this time was consistent with that observed during a phenylephrine-induced baroreflex. At 4-5 s, the FHR/MAP relationship began to deviate from the phenylephrine baroreflex curve as FHR fell independently of MAP until its nadir in association with intense peripheral vasoconstriction (P = 0.000). During prolonged-UCO, cerebral oxygenation remained steady until 4 s after the start of prolonged-UCO, and then began to fall (P = 0.000). FHR and cerebral oxygenation then fell in parallel until the FHR nadir. In conclusion, the baroreflex has a minor role in mediating the first 3-4 s of FHR decelerations during complete UCO, but thereafter the peripheral chemoreflex is the dominant mediator. Overall, the baroreflex is neither necessary nor sufficient to produce deep, rapid decelerations characteristic of variable decelerations; it is therefore likely to be a minor contributor to intrapartum decelerations.


Subject(s)
Baroreflex , Heart Rate, Fetal , Animals , Deceleration , Female , Fetus , Pregnancy , Sheep , Umbilical Cord
4.
Crit Care Med ; 47(1): e36-e43, 2019 01.
Article in English | MEDLINE | ID: mdl-30394921

ABSTRACT

OBJECTIVES: To examine the effects of fluid bolus therapy on systemic hemodynamics, renal blood flow, intrarenal perfusion and oxygenation, PO2, renal function, and fluid balance in experimental early septic acute kidney injury. DESIGN: Interventional study. SETTING: Research institute. SUBJECTS: Adult Merino ewes. INTERVENTIONS: Implantation of flow probes on the pulmonary and renal arteries and laser Doppler oxygen-sensing probes in the renal cortex, medulla, and within a bladder catheter in sheep. Infusion of Escherichia coli to induce septic acute kidney injury (n = 8). After 24, 25, and 26 hours of sepsis, fluid bolus therapy (500 mL of Hartmann's solution over 15 min) was administered. MEASUREMENTS AND MAIN RESULTS: In conscious sheep, infusion of Escherichia coli decreased creatinine clearance and increased plasma creatinine, renal blood flow (+46% ± 6%) and cortical perfusion (+25% ± 4%), but medullary perfusion (-48% ± 5%), medullary PO2 (-56% ± 4%), and urinary PO2 (-54% ± 3%) decreased (p < 0.01). The first fluid bolus therapy increased blood pressure (+6% ± 1%), central venous pressure (+245% ± 65%), cardiac output (+11% ± 2%), medullary PO2 (+280% ± 90%), urinary PO2 (+164% ± 80%), and creatinine clearance (+120% ± 65%) at 30 minutes. The following two boluses had no beneficial effects on creatinine clearance. The improvement in medullary oxygenation dissipated following the third fluid bolus therapy. Study animals retained 69% of the total volume and 80% of sodium infused. Throughout the study, urinary PO2 correlated significantly with medullary PO2. CONCLUSIONS: In early experimental septic acute kidney injury, fluid bolus therapy transiently improved renal function and medullary PO2, as also reflected by increased urinary PO2. These initial effects of fluid bolus therapy dissipated within 4 hours, despite two additional fluid boluses, and resulted in significant volume retention.


Subject(s)
Acute Kidney Injury/therapy , Fluid Therapy , Oxygen/metabolism , Renal Circulation , Sepsis/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/microbiology , Animals , Blood Pressure , Cardiac Output , Central Venous Pressure , Creatinine/analysis , Disease Models, Animal , Escherichia coli , Escherichia coli Infections/complications , Kidney/metabolism , Sepsis/microbiology , Sheep
5.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R319-R327, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31166691

ABSTRACT

Catheter-based renal denervation (RDN) was introduced as a treatment for resistant hypertension. There remain critical questions regarding the physiological mechanisms underlying the hypotensive effects of catheter-based RDN. Previous studies indicate that surgical denervation reduces renin and the natriuretic response to saline loading; however, the effects on these variables of catheter-based RDN, which does not yield complete denervation, are largely unknown. The aim of this study was to investigate the effects of catheter-based RDN on glomerular-associated renin and regulation of fluid and sodium homeostasis in response to physiological challenges. First, immunohistochemical staining for renin was performed in normotensive sheep (n = 6) and sheep at 1 wk (n = 6), 5.5 mo (n = 5), and 11 mo (n = 5) after unilateral RDN using the same catheter used in patients (Symplicity). Following catheter-based RDN (1 wk), renin-positive glomeruli were significantly reduced compared with sham animals (P < 0.005). This was sustained until 5.5 mo postdenervation. To determine whether the reduction in renin after 1 wk had physiological effects, in a separate cohort, Merino ewes were administered high and low saline loads before and 1 wk after bilateral RDN (n = 9) or sham procedure (n = 8). After RDN (1 wk), the diuretic response to a low saline load was significantly reduced (P < 0.05), and both the diuretic and natriuretic responses to a high saline load were significantly attenuated (P < 0.05). In conclusion, these findings indicate that catheter-based RDN acutely alters the ability of the kidney to regulate fluid and electrolyte balance. Further studies are required to determine the long-term effects of catheter-based RDN on renal sodium and water homeostasis.


Subject(s)
Catheters , Diuretics/pharmacology , Kidney/metabolism , Sodium/metabolism , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Catheters/adverse effects , Denervation/methods , Hypertension/physiopathology , Kidney/drug effects , Kidney/physiopathology , Renal Artery/physiopathology , Renin/metabolism , Sheep
6.
Br J Anaesth ; 122(3): 342-349, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30770052

ABSTRACT

BACKGROUND: Global and intra-renal perfusion and oxygenation may be affected by the choice of anaesthetic. We compared the effects of isoflurane with those of propofol and fentanyl on renal blood flow (RBF) and intra-renal perfusion and oxygenation, and assessed how these were associated with renal sympathetic nerve activity (RSNA). METHODS: A renal artery flow probe and laser Doppler and oxygen-sensing probes were surgically implanted in the renal medulla and cortex in 20 Merino ewes. RSNA was measured in 12 additional ewes. We compared the effects of volatile or i.v. anaesthesia on global RBF, renal oxygen delivery (RDO2), intra-renal perfusion, and RSNA with the non-anaesthetised state on postoperative day 3 as control reference. RESULTS: Compared with a non-anaesthetised state, volatile anaesthesia reduced global RBF [-76 (82-68)%], RDO2 [-76 (83-71)%], and cortical [-68 (74-54)%] and medullary [-76 (84-72)%] perfusion. I.V. anaesthesia reduced RBF [-55 (67-38)%], RDO2 [-55 (65-44)%], and cortical [-27 (45-6)%] and medullary [-35 (48-30)%] perfusion, but to a lesser extent than volatile anaesthesia. Renal PO2 was not influenced by anaesthesia, whilst RSNA was elevated during volatile, but not during i.v. anaesthesia. CONCLUSIONS: Volatile and i.v. general anaesthesia markedly reduced global RBF, RDO2, and regional kidney perfusion. These effects were greater with volatile anaesthesia, and were paralleled by an increase in RSNA. Our findings suggest a neurogenic modulatory effect of anaesthetics on renal perfusion and oxygenation.


Subject(s)
Anesthesia, General/methods , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Oxygen/metabolism , Renal Circulation/drug effects , Sympathetic Nervous System/drug effects , Animals , Female , Fentanyl/pharmacology , Isoflurane/pharmacology , Models, Animal , Propofol/pharmacology , Sheep
7.
Basic Res Cardiol ; 113(5): 35, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076468

ABSTRACT

Increased cardiac sympathetic nerve activity (CSNA) is a key feature of heart failure (HF) and is associated with poor outcome. There is evidence that central angiotensinergic mechanisms contribute to the increased CSNA in HF, but the central sites involved are unknown. In an ovine, rapid pacing model of HF, we investigated the contribution of the lamina terminalis and area postrema to the increased CSNA and also the responses to fourth ventricular infusion of the angiotensin type 1 receptor antagonist losartan. Ablation of the area postrema or sham lesion (n = 6/group), placement of lamina terminalis lesion electrodes (n = 5), and insertion of a cannula into the fourth ventricle (n = 6) were performed when ejection fraction was ~ 50%. When ejection fraction was < 40%, recording electrodes were implanted, and after 3 days, resting CSNA and baroreflex control of CSNA were measured before and following lesion of the lamina terminalis, in groups with lesion or sham lesion of the area postrema and before and following infusion of losartan (1.0 mg/h for 5 h) into the fourth ventricle. In conscious sheep with HF, lesion of the lamina terminalis did not significantly change CSNA (91 ± 2 vs. 86 ± 3 bursts/100 heart beats), whereas CSNA was reduced in the group with lesion of the area postrema (89 ± 3 to 45 ± 10 bursts/100 heart beats, P < 0.01) and following fourth ventricular infusion of losartan (89 ± 3 to 48 ± 8 bursts/100 heartbeats, P < 0.01). These findings indicate that the area postrema and brainstem angiotensinergic mechanisms may play an important role in determining the increased CSNA in HF.


Subject(s)
Area Postrema/physiopathology , Heart Failure/physiopathology , Heart/innervation , Hypothalamus/physiopathology , Sympathetic Nervous System/physiopathology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Area Postrema/surgery , Arterial Pressure , Baroreflex , Disease Models, Animal , Female , Heart Rate , Hypothalamus/surgery , Infusions, Intraventricular , Losartan/pharmacology , Neural Pathways/physiopathology , Renin-Angiotensin System , Sheep, Domestic
8.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1242-R1250, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30332304

ABSTRACT

Expansion of extracellular fluid volume with crystalloid solutions is a common medical intervention, but its effects on renal cortical and medullary oxygenation are poorly understood. Therefore, we instrumented sheep under general anesthesia to enable continuous measurement of systemic and renal hemodynamics, global renal oxygen delivery and consumption, and intrarenal tissue perfusion and oxygen tension (Po2) in conscious animals ( n = 7). The effects of three sequential intermittent infusions of 500 ml of compound sodium lactate solution, administered at hourly intervals, were determined. Volume expansion induced transient increases in mean arterial pressure (+7 ± 2%), central venous pressure (+50 ± 19%), and cardiac output (+15 ± 3%). There were sustained increases in renal medullary tissue Po2 (+35 ± 10%) despite increases in global renal oxygen consumption (+66 ± 18%) and renal oxygen extraction (+64 ± 8%). Volume expansion did not significantly alter renal blood flow, renal oxygen delivery, or medullary perfusion. The sustained increase in medullary Po2 was paralleled by increased bladder urine Po2 (34 ± 4%). Cortical perfusion and Po2 did not change significantly. Our findings indicate that extracellular fluid volume expansion can increase renal medullary oxygenation, providing a potential mechanistic basis for its use as prophylaxis against iatrogenic acute kidney injury. They also indicate that continuous measurement of bladder urine Po2 could be used to monitor the effects of volume expansion on medullary oxygenation. However, the mechanisms mediating increased medullary oxygenation during volume expansion remain to be determined.


Subject(s)
Extracellular Fluid/metabolism , Kidney/metabolism , Oxygen Consumption/physiology , Renal Circulation/physiology , Acute Kidney Injury/metabolism , Animals , Cardiac Output , Hemodynamics/physiology , Kidney Medulla/metabolism , Oxygen/metabolism , Sheep
9.
Crit Care Med ; 43(7): e221-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25860204

ABSTRACT

OBJECTIVES: In sepsis, prolonged, sympathetic overstimulation may lead to vasopressor-refractory hypotension. We therefore examined the effects of the α2-adrenergic agonist clonidine on mean arterial pressure, renal sympathetic nerve activity, and pressor responsiveness to phenylephrine and angiotensin II during hypotensive sepsis in conscious sheep. DESIGN: Interventional study. SETTING: Research institute. SUBJECTS: Twelve adult Merino ewes (n = 6 per group). INTERVENTIONS: Sepsis was induced by IV infusion of Escherichia coli for 32 hours. Pressor responses to increasing doses of phenylephrine and angiotensin II were measured at baseline and at 24, 28, and 32 hours of sepsis. Sheep were treated with clonidine (1 µg/kg/hr) or saline-vehicle from 24 to 32 hours of sepsis. MEASUREMENTS AND MAIN RESULTS: Sepsis was characterized by hypotension (~12 mm Hg), increased heart rate (~80 beats/min), increased renal sympathetic nerve activity (~70%), and blunted pressor responses to phenylephrine and angiotensin II. In vehicle-treated sheep, mean arterial pressure progressively declined from 25 to 32 hours of sepsis (73 ± 3 to 66 ± 3 mm Hg; p = 0.013) while the elevations in heart rate and renal sympathetic nerve activity and reduced pressor responsiveness to vasopressors persisted. Clonidine treatment prevented the further decline in mean arterial pressure, substantially reduced heart rate and renal sympathetic nerve activity and restored pressor responsiveness to both phenylephrine and angiotensin II toward preseptic levels. CONCLUSIONS: Administration of clonidine during hypotensive sepsis reduced renal sympathetic nerve activity, restored vascular sensitivity to both phenylephrine and angiotensin II, and resulted in better preservation of arterial pressure. Considering these findings, a clinical trial for the use of clonidine in the treatment of persistent vasopressor-refractory hypotension in patients with septic shock would be worthwhile.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Angiotensin II/pharmacology , Blood Pressure/drug effects , Clonidine/pharmacology , Hypotension/physiopathology , Phenylephrine/pharmacology , Sepsis/physiopathology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Vasoconstrictor Agents/pharmacology , Animals , Female , Hypotension/etiology , Kidney/innervation , Sepsis/complications , Sheep
10.
Exp Physiol ; 100(5): 485-90, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25573386

ABSTRACT

NEW FINDINGS: What is the topic of this review? Does catheter-based renal denervation effectively denervate the afferent and efferent renal nerves and does reinnervation occur? What advances does it highlight? Following catheter-based renal denervation, the afferent and efferent responses to electrical stimulation were abolished, renal sympathetic nerve activity was absent, and levels of renal noradrenaline and immunohistochemistry for tyrosine hydroxylase and calcitonin gene-related peptide were significantly reduced. By 11 months after renal denervation, both the functional responses and anatomical markers of afferent and efferent renal nerves had returned to normal, indicating reinnervation. Renal denervation reduces blood pressure in animals with experimental hypertension and, recently, catheter-based renal denervation was shown to cause a prolonged decrease in blood pressure in patients with resistant hypertension. The randomized, sham-controlled Symplicity HTN-3 trial failed to meet its primary efficacy end-point, but there is evidence that renal denervation was incomplete in many patients. Currently, there is little information regarding the effectiveness of catheter-based renal denervation and the extent of reinnervation. We assessed the effectiveness of renal nerve denervation with the Symplicity Flex catheter and the functional and anatomical reinnervation at 5.5 and 11 months postdenervation. In anaesthetized, non-denervated sheep, there was a high level of renal sympathetic nerve activity, and electrical stimulation of the renal nerve increased blood pressure and reduced heart rate (afferent response) and caused renal vasoconstriction and reduced renal blood flow (efferent response). Immediately after renal denervation, renal sympathetic nerve activity and the responses to electrical stimulation were absent, indicating effective denervation. By 11 months after denervation, renal sympathetic nerve activity was present and the responses to electrical stimulation were normal, indicating reinnervation. Anatomical measures of renal innervation by sympathetic efferent nerves (tissue noradrenaline and tyrosine hydroxylase) and afferent sensory nerves (calcitonin gene-related peptide) demonstrated large decreases at 1 week postdenervation, but normal levels at 11 months postdenervation. In summary, catheter-based renal denervation is effective, but reinnervation occurs. Studies of central and renal changes postdenervation are required to understand the causes of the prolonged hypotensive response to catheter-based renal denervation in human hypertension.


Subject(s)
Blood Pressure/physiology , Catheters , Hypertension/physiopathology , Kidney/innervation , Sympathectomy , Sympathetic Nervous System/physiopathology , Animals , Humans , Sympathectomy/methods
11.
J Neuroinflammation ; 11: 89, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24886663

ABSTRACT

BACKGROUND: Perinatal asphyxia and exposure to intrauterine infection are associated with impaired neurodevelopment in preterm infants. Acute exposure to non-injurious infection and/or inflammation can either protect or sensitize the brain to subsequent hypoxia-ischemia. However, the effects of subacute infection and/or inflammation are unclear. In this study we tested the hypothesis that acute-on-chronic exposure to lipopolysaccharide (LPS) would exacerbate white matter injury after subsequent asphyxia in preterm fetal sheep. METHODS: Fetal sheep at 0.7 gestational age received a continuous LPS infusion at 100 ng/kg for 24 hours, then 250 ng/kg/24 hours for 96 hours, plus 1 µg boluses of LPS at 48, 72, and 96 hours or the same volume of saline. Four hours after the last bolus, complete umbilical cord occlusion or sham occlusion was induced for 15 minutes. Sheep were sacrificed 10 days after the start of infusions. RESULTS: LPS exposure was associated with induction of microglia and astrocytes and loss of total and immature and mature oligodendrocytes (n = 9) compared to sham controls (n = 9). Umbilical cord occlusion with saline infusions was associated with induction of microglia, astrogliosis, and loss of immature and mature oligodendrocytes (n = 9). LPS exposure before asphyxia (n = 8) was associated with significantly reduced microglial activation and astrogliosis and improved numbers of immature and mature oligodendrocytes compared to either LPS exposure or asphyxia alone. CONCLUSIONS: Contrary to our initial hypothesis, the combination of acute-on-chronic LPS with subsequent asphyxia reduced neuroinflammation and white matter injury compared with either intervention alone.


Subject(s)
Asphyxia Neonatorum/physiopathology , Inflammation/prevention & control , Leukoencephalopathies/prevention & control , Prenatal Exposure Delayed Effects/physiopathology , Animals , Disease Models, Animal , Embryo, Mammalian , Endotoxins/toxicity , Female , Inflammation/etiology , Leukoencephalopathies/etiology , Leukoencephalopathies/pathology , Lipopolysaccharides/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Sheep , Time Factors
12.
Am J Physiol Regul Integr Comp Physiol ; 307(1): R75-81, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24789991

ABSTRACT

Effective treatment of sepsis remains a significant challenge in intensive care units. During sepsis, there is widespread activation of the sympathetic nervous system, which is thought to have both beneficial and detrimental effects. The sympathoexcitation is thought to be partly due to the developing hypotension, but may also be a response to the inflammatory mediators released. Thus, we investigated whether intracarotid infusion of prostaglandin E2 (PGE2) induced similar cardiovascular changes to those caused by intravenous infusion of Escherichia coli in sheep and whether inhibition of prostaglandin synthesis, with the nonselective cyclooxygenase inhibitor indomethacin, administered at 2 and 8 h after the onset of sepsis, reduced sympathetic nerve activity (SNA), and heart rate (HR). Studies were performed in conscious sheep instrumented to measure mean arterial pressure (MAP), HR, cardiac SNA (CSNA), and renal SNA (RSNA). Intracarotid infusion of PGE2 (50 ng·kg(-1)·min(-1)) increased temperature, CSNA, and HR, but not MAP or RSNA. Sepsis, induced by infusion of E. coli, increased CSNA, but caused an initial, transient inhibition of RSNA. At 2 h of sepsis, indomethacin (1.25 mg/kg bolus) increased MAP and caused reflex decreases in HR and CSNA. After 8 h of sepsis, indomethacin did not alter MAP, but reduced CSNA and HR, without altering baroreflex control. These findings indicate an important role for prostaglandins in mediating the increase in CSNA and HR during the development of hyperdynamic sepsis, whereas prostaglandins do not have a major role in determining the early changes in RSNA.


Subject(s)
Dinoprostone/administration & dosage , Escherichia coli Infections/physiopathology , Heart/innervation , Sepsis/physiopathology , Sympathetic Nervous System/drug effects , Animals , Arterial Pressure/drug effects , Baroreflex/drug effects , Carotid Arteries , Cyclooxygenase Inhibitors/administration & dosage , Disease Models, Animal , Drug Administration Schedule , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Female , Heart Rate/drug effects , Infusions, Intra-Arterial , Kidney/innervation , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/microbiology , Sheep , Signal Transduction/drug effects , Sympathetic Nervous System/physiopathology , Time Factors
13.
Am J Physiol Regul Integr Comp Physiol ; 307(4): R387-95, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24944248

ABSTRACT

Perinatal exposure to infection is highly associated with adverse outcomes. Experimentally, acute, severe exposure to gram-negative bacterial lipopolysaccharide (LPS) is associated with increased fetal heart rate variability (FHRV). It is unknown whether FHRV is affected by subclinical infection with or without acute exacerbations. We therefore tested the hypothesis that FHRV would be associated with hypotension after acute on chronic exposure to LPS. Chronically instrumented fetal sheep at 0.7 gestation were exposed to a continuous low-dose LPS infusion (n = 12, 100 ng/kg over 24 h, followed by 250 ng·kg(-1)·24 h(-1) for a further 96 h) or the same volume of saline (n = 10). Boluses of either 1 µg LPS or saline were given at 48, 72, and 96 h. Low-dose infusion was not associated with hemodynamic or FHRV changes. The first LPS bolus was associated with tachycardia and suppression of nuchal electromyographic activity in all fetuses. Seven of twelve fetuses developed hypotension (a fall in mean arterial blood pressure ≥5 mmHg). FHRV was transiently increased only at the onset of hypotension, in association with increased cytokine induction and electroencephalogram suppression. FHRV then fell before the nadir of hypotension, with transient suppression of short-term FHRV. After the second LPS bolus, the hypotension group showed a biphasic pattern of a transient increase in FHRV followed by more prolonged suppression. These findings suggest that infection-related hypotension in the preterm fetus mediates the transient increase in FHRV and that repeated exposure to LPS leads to progressive loss of FHRV.


Subject(s)
Bradycardia/physiopathology , Fetal Heart/physiopathology , Heart Rate, Fetal , Hypotension/physiopathology , Lipopolysaccharides , Sepsis/physiopathology , Tachycardia/physiopathology , Animals , Arterial Pressure , Biomarkers/blood , Blood Gas Analysis , Blood Glucose/metabolism , Bradycardia/chemically induced , Bradycardia/diagnosis , Circadian Rhythm , Disease Models, Animal , Electrocardiography , Electroencephalography , Electromyography , Female , Fetal Blood/metabolism , Fetal Monitoring/methods , Gestational Age , Hydrogen-Ion Concentration , Hypotension/chemically induced , Hypotension/diagnosis , Lactic Acid/blood , Pregnancy , Sepsis/chemically induced , Sepsis/diagnosis , Sheep , Tachycardia/chemically induced , Tachycardia/diagnosis , Time Factors
14.
Exp Physiol ; 99(8): 1031-41, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24928955

ABSTRACT

Heart failure (HF) is associated with a large increase in cardiac sympathetic nerve activity (CSNA), which has detrimental effects on the heart and promotes arrhythmias and sudden death. There is increasing evidence that arterial chemoreceptor activation plays an important role in stimulating renal sympathetic nerve activity (RSNA) and muscle sympathetic nerve activity in HF. Given that sympathetic nerve activity to individual organs is differentially controlled, we investigated whether tonic arterial chemoreceptor activation contributes to the increased CSNA in HF. We recorded CSNA and RSNA in conscious normal sheep and in sheep with mild HF induced by rapid ventricular pacing (ejection fraction <40%). Tonic arterial chemoreceptor function was evaluated by supplementing room air with 100% intranasal oxygen (2-3 l min(-1)) for 20 min, thereby deactivating chemoreceptors. The effects of hyperoxia on resting levels and baroreflex control of heart rate, CSNA and RSNA were determined. In HF, chemoreceptor deactivation induced by hyperoxia significantly reduced CSNA [90 ± 2 versus 75 ± 5 bursts (100 heart beats)(-1), P < 0.05, n = 10; room air versus hyperoxia] and heart rate (96 ± 4 versus 85 ± 4 beats min(-1), P < 0.001, n = 12). There was no change in RSNA burst incidence [93 ± 4 versus 92 ± 4 bursts (100 heart beats)(-1), n = 7], although due to the bradycardia the RSNA burst frequency was decreased (90 ± 8 versus 77 ± 7 bursts min(-1), P < 0.001). In normal sheep, chemoreceptor deactivation reduced heart rate without a significant effect on CSNA or RSNA. In summary, deactivation of peripheral chemoreceptors during HF reduced the elevated levels of CSNA, indicating that tonic arterial chemoreceptor activation plays a critical role in stimulating the elevated CSNA in HF.


Subject(s)
Chemoreceptor Cells/physiology , Heart Failure/physiopathology , Sympathetic Nervous System/physiology , Animals , Arteries/physiology , Baroreflex/physiology , Blood Pressure/physiology , Heart , Heart Rate/physiology , Hyperoxia/physiopathology , Sheep
15.
Exp Physiol ; 99(1): 80-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24014809

ABSTRACT

Power spectral analysis of fetal heart rate variability has been proposed to provide a non-invasive estimate of autonomic balance. However, there are few systematic data before birth. We therefore examined developmental changes in the frequency power spectrum at very low (0-0.04 Hz), low (0.04-0.15 Hz) and high frequencies (0.15-0.4 Hz), as well as the ratio of low- to high-frequency power (LF/HF), in chronically catheterized, healthy fetal sheep at 0.6 (n = 8), 0.7 (n = 7) and 0.8 gestational age (ga; n = 11). In a second study, 0.8 ga fetuses received either atropine (4.8 mg bolus, then 4.8 mg h(-1) for 30 min, n = 6) or 6-hydroxydopamine (20 mg ml(-1) at 2.5 ml h(-1) for 3 h; n = 9). Data were analysed by sleep state, defined by low-voltage-high-frequency (LV) or high-voltage-low-frequency (HV) EEG. Total spectral power increased with gestational age (P < 0.05), while LF/HF decreased from 0.6 to 0.7 ga. At 0.8 ga, heart rate and LF/HF were significantly higher during HV than LV sleep (P < 0.05). Consistent with this, although total spectral power was not significantly greater during HV sleep, there was a significant interaction between sleep state and frequency band (P = 0.02). Both atropine (P = 0.05) and 6-hydroxydopamine (P < 0.05) were associated with an overall reduction in spectral power but no significant effect on the LF/HF ratio. This study does not support substantial, consistent differences between the frequencies of sympathetic and parasympathetic activity in late-gestation fetal sheep.


Subject(s)
Fetus/physiology , Heart Rate/physiology , Sheep/physiology , Animals , Female , Gestational Age , Parasympathetic Nervous System/physiology , Pregnancy , Sleep/physiology , Sympathetic Nervous System/physiology
16.
J Neural Eng ; 21(3)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38776894

ABSTRACT

Objective.Electrical stimulation of peripheral nerves has long been a treatment option to restore impaired neural functions that cannot be restored by conventional pharmacological therapies. Endovascular neurostimulation with stent-mounted electrode arrays is a promising and less invasive alternative to traditional implanted electrodes, which typically require invasive implantation surgery. In this study, we investigated the feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array and compared its performance to that of a commercially available pacing catheter.Approach.In acute animal experiments, a pacing catheter was implanted unilaterally in the femoral artery to stimulate the femoral nerve in a bipolar configuration. Electromyogram of the quadriceps and electroneurogram of a distal branch of the femoral nerve were recorded. After retrieval of the pacing catheter, a bipolar stent-mounted electrode array was implanted in the same artery and the recording sessions were repeated.Main Results.Stimulation of the femoral nerve was feasible with the stent-electrode array. Although the threshold stimulus intensities required with the stent-mounted electrode array (at 100-500µs increasing pulse width, 2.17 ± 0.87 mA-1.00 ± 0.11 mA) were more than two times higher than the pacing catheter electrodes (1.05 ± 0.48 mA-0.57 ± 0.28 mA), we demonstrated that, by reducing the stimulus pulse width to 100µs, the threshold charge per phase and charge density can be reduced to 0.22 ± 0.09µC and 24.62 ± 9.81µC cm-2, which were below the tissue-damaging limit, as defined by the Shannon criteria.Significance.The present study is the first to reportin vivofeasibility and efficiency of peripheral nerve stimulation using an endovascular stent-mounted electrode array.


Subject(s)
Electrodes, Implanted , Feasibility Studies , Femoral Nerve , Stents , Femoral Nerve/physiology , Animals , Endovascular Procedures/instrumentation , Endovascular Procedures/methods , Electric Stimulation/methods , Electric Stimulation/instrumentation , Male , Electromyography/methods
17.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R799-803, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23485869

ABSTRACT

There is increasing evidence that exposure to infection can sensitize the fetus to subsequent hypoxic injury. However, it is unclear whether this involves compromise of the fetal cardiovascular adaptation to acute asphyxia. Chronically instrumented 103-day-old (0.7 gestational age, term is 147 days) fetal sheep in utero were randomized to receive either gram-negative lipopolysaccharide (LPS) as a continuous low-dose infusion for 120 h plus boluses of 1 µg LPS at 48, 72, and 96 h with asphyxia at 102 h (i.e., 6 h after the final LPS bolus) induced by umbilical cord occlusion for 15 min (LPS treated, n = 8), or the same volume of saline plus occlusion (saline treated, n = 7). Fetuses were killed 5 days after occlusion. LPS was associated with a more rapid fall in fetal heart rate at the onset of occlusion (P < 0.05) and with minimally lower values during occlusion (P < 0.05). The LPS-treated fetuses had lower fetal mean arterial blood pressure (BP) and greater carotid artery blood flow (CaBF) before occlusion (P < 0.05) but showed an increase in BP and fall in CaBF to similar values as saline controls during occlusion. There were no differences between the groups in femoral blood flow before or during occlusion. Contrary to our initial hypothesis, acute on chronic exposure to LPS was associated with more rapid cardiovascular adaptation to umbilical cord occlusion.


Subject(s)
Adaptation, Physiological/drug effects , Blood Pressure/drug effects , Lipopolysaccharides/pharmacology , Prenatal Exposure Delayed Effects/physiopathology , Reflex/drug effects , Regional Blood Flow/drug effects , Adaptation, Physiological/physiology , Animals , Asphyxia/physiopathology , Blood Pressure/physiology , Carotid Arteries/drug effects , Carotid Arteries/physiopathology , Endotoxins , Female , Fetus/blood supply , Fetus/physiopathology , Hypotension/physiopathology , Pregnancy , Regional Blood Flow/physiology , Sheep
18.
Am J Physiol Regul Integr Comp Physiol ; 304(3): R189-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23235324

ABSTRACT

Acute, high-dose exposure to endotoxin lipopolysaccharide (LPS) in preterm fetal sheep can trigger periventricular white matter lesions (PVL), in association with severe hypotension/hypoxemia and significant mortality. Intriguingly, however, chronic or repeated exposure to LPS can induce tachyphylaxis. We therefore tested the hypothesis that progressive, acute on chronic fetal infection would be associated with white matter injury with little fetal mortality. Chronically instrumented preterm (0.7 gestational age) fetal sheep were exposed to a continuous low-dose LPS infusion (100 ng over 24 h, followed by 250 ng/24 h for 96 h) or saline. Boluses of 1 µg LPS or saline were given at 48, 72, and 96 h; sheep were killed at day 10. Six of 11 fetal sheep exposed to saline infusion + LPS boluses died 4-7 h after the first bolus. In contrast, there was no fetal mortality after saline infusions alone (n = 9), low-dose LPS infusion + saline boluses (n = 5), or low-dose LPS + LPS boluses (n = 9). Low-dose LPS infusion + LPS boluses was associated with greater microglial induction than low-dose LPS + saline boluses but a similar area of periventricular white matter inflammation. One fetus developed severe focal white matter necrosis after LPS infusion + boluses. The acute cardiovascular compromise associated with high-dose, acute exposure to LPS is markedly attenuated by previous low-dose infusions, with limited apparent exacerbation of periventricular white matter injury compared with low-dose infusion alone.


Subject(s)
Brain/drug effects , Brain/physiopathology , Endotoxins/toxicity , Nerve Fibers, Myelinated/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Female , Male , Pregnancy , Premature Birth , Sheep , Survival Rate , Toxicity Tests, Acute , Toxicity Tests, Chronic
19.
Exp Physiol ; 98(3): 699-709, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23104935

ABSTRACT

Dopamine is commonly used for blood pressure support in the neonate, but has limited empirical evidence to support its use. We tested the hypothesis that after near-terminal asphyxia in utero, dopamine infusions would prevent secondary hypotension. Fetal sheep (122-129 days of gestation; term is 147 days) received umbilical cord occlusion for 15 min or sham occlusion (n = 5). If the mean arterial blood pressure fell below 90% of baseline within 6 h after occlusion, fetuses were randomized to either dopamine infusion starting at 4 µg kg(-1) min(-1) and titrated according to mean arterial blood pressure up to a maximum of 40 µg kg(-1) min(-1) (n = 5) or to the same volume of normal saline (n = 5). Dopamine infusion, initiated at a median of 180 min after occlusion (range 96-280 min), was associated with a marked but transient increase in mean arterial blood pressure and fall in femoral blood flow compared with saline. Terminal hypotension developed later in four of the five fetuses that received maximal dopamine infusions than in five of five receiving saline infusion [517 (range 240-715) versus 106 min (range 23-497) after the start of infusions, P < 0.05]. In conclusion, dopamine infusion delayed but did not prevent terminal hypotension after severe asphyxia.


Subject(s)
Asphyxia/drug therapy , Dopamine/therapeutic use , Fetal Hypoxia/drug therapy , Fetus/blood supply , Hypotension/prevention & control , Animals , Arterial Pressure , Asphyxia/complications , Carotid Arteries/physiology , Female , Gestational Age , Heart Rate, Fetal/physiology , Pregnancy , Regional Blood Flow/physiology , Sheep, Domestic , Umbilical Cord/blood supply
20.
Intensive Care Med Exp ; 11(1): 53, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37535121

ABSTRACT

BACKGROUND: The autonomic nervous system can modulate the innate immune responses to bacterial infections via the splanchnic sympathetic nerves. Here, we aimed to determine the effects of bilateral splanchnic sympathetic nerve denervation on blood pressure, plasma cytokines, blood bacterial counts and the clinical state in sheep with established bacteremia. METHODS: Conscious Merino ewes received an intravenous infusion of Escherichia coli for 30 h (1 × 109 colony forming units/mL/h) to induce bacteremia. At 24 h, sheep were randomized to have bilaterally surgically implanted snares pulled to induce splanchnic denervation (N = 10), or not pulled (sham; N = 9). RESULTS: Splanchnic denervation did not affect mean arterial pressure (84 ± 3 vs. 84 ± 4 mmHg, mean ± SEM; PGroup = 0.7) compared with sham treatment at 30-h of bacteremia. Splanchnic denervation increased the plasma levels of the pro-inflammatory cytokine interleukin-6 (9.2 ± 2.5 vs. 3.8 ± 0.3 ng/mL, PGroup = 0.031) at 25-h and reduced blood bacterial counts (2.31 ± 0.45 vs. 3.45 ± 0.11 log10 [CFU/mL + 1], PGroup = 0.027) at 26-h compared with sham treatment. Plasma interleukin-6 and blood bacterial counts returned to sham levels by 30-h. There were no differences in the number of bacteria present within the liver (PGroup = 0.3). However, there was a sustained improvement in clinical status, characterized by reduced respiratory rate (PGroup = 0.024) and increased cumulative water consumption (PGroup = 0.008) in splanchnic denervation compared with sham treatment. CONCLUSION: In experimental Gram-negative bacteremia, interrupting splanchnic sympathetic nerve activity increased plasma interleukin-6, accelerated bacterial clearance, and improved clinical state without inducing hypotension. These findings suggest that splanchnic neural manipulation is a potential target for pharmacological or non-pharmacological interventions.

SELECTION OF CITATIONS
SEARCH DETAIL