Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Anal Toxicol ; 28(1): 27-34, 2004.
Article in English | MEDLINE | ID: mdl-14987421

ABSTRACT

Isoxsuprine is used to treat navicular disease and other lower-limb problems in the horse. Isoxsuprine is regulated as a class 4 compound by the Association of Racing Commissioners, International (ARCI) and, thus, requires regulatory monitoring. A gas chromatography-mass spectrometry method utilizing electron impact ionization was developed and validated for the quantitation of isoxsuprine in equine plasma or equine urine. The method utilized robotic solid-phase extraction and tri-methyl silyl ether products of derivatization. Products were bis-trimethylsilyl (TMS) isoxsuprine and tris-TMS ritodrine, which released intense quantifier ions m/z 178 for isoxsuprine and m/z 236 for ritodrine that were products of C-C cleavage. To our knowledge, this procedure is faster and more sensitive than other methods in the literature. Concentrations in urine and plasma of isoxsuprine were determined from a calibrator curve that was generated along with unknowns. Ritodrine was used as an internal standard and was, therefore, present in all samples, standards, and blanks. Validation data was also collected. The limit of detection of isoxsuprine in plasma was determined to be 2 ng/mL, the limit of quantitation of isoxsuprine in plasma was determined to be < 5 ng/mL. The mean coefficient of determination for the calibrator curves for plasma was 0.9925 +/- 0.0052 and for calibrator curves for urine 0.9904 +/- 0.0075. The recovery efficiencies at concentrations of 50, 200, and 300 ng/mL were 76%, 73%, and 76%, respectively, in plasma and 92%, 89%, and 91% in urine.


Subject(s)
Doping in Sports , Gas Chromatography-Mass Spectrometry , Horses , Isoxsuprine/analysis , Substance Abuse Detection/methods , Sympatholytics/analysis , Animals , Female , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods
2.
J Anal Toxicol ; 24(5): 309-15, 2000.
Article in English | MEDLINE | ID: mdl-10926352

ABSTRACT

Remifentanil (4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic acid methyl ester) is a mu-opioid receptor agonist with considerable abuse potential in racing horses. The identification of its major equine urinary metabolite, 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid, an ester hydrolysis product of remifentanil is reported. Administration of remifentanil HCl (5 mg, intravenous) produced clear-cut locomotor responses, establishing the clinical efficacy of this dose. ELISA analysis of postadministration urine samples readily detected fentanyl equivalents in these samples. Mass spectrometric analysis, using solid-phase extraction and trimethylsilyl (TMS) derivatization, showed the urine samples contained parent remifentanil in low concentrations, peaking at 1 h. More significantly, a major peak was identified as representing 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid, arising from ester hydrolysis of remifentanil. This metabolite reached its maximal urinary concentrations at 1 h and was present at up to 10-fold greater concentrations than parent remifentanil. Base hydrolysis of remifentanil yielded a carboxylic acid with the same mass spectral characteristics as those of the equine metabolite. In summary, these data indicate that remifentanil administration results in the appearance of readily detectable amounts of 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid in urine. On this basis, screening and confirmation tests for this equine urinary metabolite should be optimized for forensic control of remifentanil.


Subject(s)
Analgesics, Opioid/metabolism , Piperidines/metabolism , Analgesics, Opioid/analysis , Analgesics, Opioid/urine , Animals , Enzyme-Linked Immunosorbent Assay , Female , Forensic Medicine/methods , Horses , Infusions, Intravenous , Mass Spectrometry , Piperidines/analysis , Piperidines/urine , Remifentanil , Veterinary Medicine/methods
3.
Can J Vet Res ; 64(2): 112-6, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10805250

ABSTRACT

Isoxsuprine is routinely recovered from enzymatically-hydrolyzed, post-administration urine samples as parent isoxsuprine in equine forensic science. However, the specific identity of the material in horse urine from which isoxsuprine is recovered has never been established, although it has long been assumed to be a glucuronide conjugate (or conjugates) of isoxsuprine. Using ESI/MS/MS positive mode as an analytical tool, urine samples collected 4-8 h after isoxsuprine administration yielded a major peak at m/z 554 that was absent from control samples and resisted fragmentation to daughter ions. Titration of this material with increasing concentrations of sodium acetate yielded m/z peaks consistent with the presence of monosodium and disodium isoxsuprine-glucuronide complexes, suggesting that the starting material was a dipotassium-isoxsuprine-glucuronide complex. Electrospray ionization mass spectrometry negative mode disclosed the presence of a m/z 476 peak that declined following enzymatic hydrolysis and resulted in the concomitant appearance of peaks at m/z 300 and 175. The resulting peaks were consistent with the presence of isoxsuprine (m/z 300) and a glucuronic acid residue (m/z 175). Examination of the daughter ion spectrum of this putative isoxsuprine-glucuronide m/z 476 peak showed overlap of many peaks with those of similar spectra of authentic morphine-3- and morphine-6-glucuronides, suggesting they were derived from glucuronic acid conjugation. These data suggest that isoxsuprine occurs in post-administration urine samples as an isoxsuprine-glucuronide conjugate and also, under some circumstances, as an isoxsuprine-glucuronide-dipotassium complex.


Subject(s)
Horses/physiology , Isoxsuprine/urine , Vasodilator Agents/urine , Animals , Female , Forensic Medicine/methods , Glucuronides , Isoxsuprine/administration & dosage , Isoxsuprine/metabolism , Mass Spectrometry/veterinary , Vasodilator Agents/administration & dosage , Vasodilator Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL