Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Immunol ; 197(5): 1968-78, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481847

ABSTRACT

Activation of TGF-ß by dendritic cells (DCs) expressing αvß8 integrin is essential for the generation of intestinal regulatory T cells (Tregs) that in turn promote tolerance to intestinal Ags. We have recently shown that αvß8 integrin is preferentially expressed by CD103(+) DCs and confers their ability to activate TGF-ß and generate Tregs. However, how these DCs become specialized for this vital function is unknown. In this study, we show that ß8 expression is controlled by a combination of factors that include DC lineage and signals derived from the tissue microenvironment and microbiota. Specifically, our data demonstrate that TGF-ß itself, along with retinoic acid and TLR signaling, drives expression of αvß8 in DCs. However, these signals only result in high levels of ß8 expression in cells of the cDC1 lineage, CD8α(+), or CD103(+)CD11b(-) DCs, and this is associated with epigenetic changes in the Itgb8 locus. Together, these data provide a key illustrative example of how microenvironmental factors and cell lineage drive the generation of regulatory αvß8-expressing DCs specialized for activation of TGF-ß to facilitate Treg generation.


Subject(s)
Cell Lineage , Cellular Microenvironment , Dendritic Cells/immunology , Integrin beta Chains/metabolism , Intestines/cytology , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Differentiation , Dendritic Cells/physiology , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Integrin beta Chains/genetics , Integrin beta Chains/immunology , Intestines/immunology , Mice , T-Lymphocytes, Regulatory/physiology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tretinoin/metabolism
2.
Oncoimmunology ; 12(1): 2227510, 2023.
Article in English | MEDLINE | ID: mdl-37389102

ABSTRACT

Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.


Subject(s)
Melanoma , Toll-Like Receptor 3 , Animals , Mice , Adjuvants, Immunologic , Melanoma/drug therapy , Poly I-C/pharmacology
3.
Microb Cell ; 10(6): 117-132, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37275475

ABSTRACT

Toll-like receptor 3 (TLR3) is an innate immune receptor that recognizes double-stranded RNA (dsRNA) and induces inflammation in immune and normal cells to initiate anti-microbial responses. TLR3 acts also as a death receptor only in cancer cells but not in their normal counterparts, making it an attractive target for cancer therapies. To date, all of the TLR3-activating dsRNAs used at preclinical or clinical stages have major drawbacks such as structural heterogeneity, toxicity, and lack of specificity and/or efficacy. We conducted the discovery process of a new family of TLR3 agonists that are chemically manufactured on solid-phase support and perfectly defined in terms of sequence and size. A stepwise discovery process was performed leading to the identification of TL-532, a 70 base pair dsRNA that is potent without transfection reagent and is highly specific for TLR3 without activating other innate nucleic sensors such as RIG-I/MDA5, TLR7, TLR8, and TLR9. TL-532 induces inflammation in murine RAW264.7 myeloid macrophages, in human NCI-H292 lung cancer cells, and it promotes immunogenic apoptosis in tumor cells in vitro and ex vivo without toxicity towards normal primary cells. In conclusion, we identified a novel TLR3 agonist called TL-532 that has promising anticancer properties.

4.
Arthritis Res Ther ; 16(3): R115, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24886976

ABSTRACT

INTRODUCTION: Regulatory T (Treg) cells play a crucial role in preventing autoimmune diseases and are an ideal target for the development of therapies designed to suppress inflammation in an antigen-specific manner. Type 1 regulatory T (Tr1) cells are defined by their capacity to produce high levels of interleukin 10 (IL-10), which contributes to their ability to suppress pathological immune responses in several settings. The aim of this study was to evaluate the therapeutic potential of collagen type II-specific Tr1 (Col-Treg) cells in two models of rheumatoid arthritis (RA) in mice. METHODS: Col-Treg clones were isolated and expanded from collagen-specific TCR transgenic mice. Their cytokine secretion profile and phenotype characterization were studied. The therapeutic potential of Col-Treg cells was evaluated after adoptive transfer in collagen-antibody- and collagen-induced arthritis models. The in vivo suppressive mechanism of Col-Treg clones on effector T-cell proliferation was also investigated. RESULTS: Col-Treg clones are characterized by their specific cytokine profile (IL-10(high)IL-4(neg)IFN-γ(int)) and mediate contact-independent immune suppression. They also share with natural Tregs high expression of GITR, CD39 and granzyme B. A single infusion of Col-Treg cells reduced the incidence and clinical symptoms of arthritis in both preventive and curative settings, with a significant impact on collagen type II antibodies. Importantly, injection of antigen-specific Tr1 cells decreased the proliferation of antigen-specific effector T cells in vivo significantly. CONCLUSIONS: Our results demonstrate the therapeutic potential of Col-Treg cells in two models of RA, providing evidence that Col-Treg could be an efficient cell-based therapy for RA patients whose disease is refractory to current treatments.


Subject(s)
Adoptive Transfer/methods , Arthritis, Experimental/immunology , Arthritis, Experimental/therapy , Collagen Type II/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Cell Proliferation , Cells, Cultured , Flow Cytometry , Humans , Immunophenotyping , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Transgenic , Ovalbumin/immunology , Peptide Fragments/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL