Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell ; 173(7): 1742-1754.e17, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906449

ABSTRACT

Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.


Subject(s)
Diarrhea/pathology , Gastrointestinal Microbiome/drug effects , Polyethylene Glycols/pharmacology , Animals , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/chemistry , Cecum/metabolism , Cecum/microbiology , Cecum/pathology , Colon/chemistry , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/veterinary , Feces/microbiology , Glycoside Hydrolases/metabolism , Humans , Immunity, Humoral/drug effects , Immunoglobulin G/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Metagenomics , Mice , Osmolar Concentration , Polyethylene Glycols/metabolism , Proteome/analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/drug effects , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
2.
PLoS Pathog ; 16(9): e1008852, 2020 09.
Article in English | MEDLINE | ID: mdl-32960931

ABSTRACT

Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Enterocolitis, Pseudomembranous , Glucosyltransferases , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Cricetinae , Disease Models, Animal , Enterocolitis, Pseudomembranous/enzymology , Enterocolitis, Pseudomembranous/genetics , Enterocolitis, Pseudomembranous/pathology , Female , Gene Deletion , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Male , Mice
3.
Nature ; 490(7419): 288-91, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22895188

ABSTRACT

Inflammasomes are cytosolic multiprotein complexes assembled by intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and they initiate innate immune responses to invading pathogens and danger signals by activating caspase-1 (ref. 1). Caspase-1 activation leads to the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18, as well as lytic inflammatory cell death known as pyroptosis. Recently, a new non-canonical inflammasome was described that activates caspase-11, a pro-inflammatory caspase required for lipopolysaccharide-induced lethality. This study also highlighted that previously generated caspase-1 knockout mice lack a functional allele of Casp11 (also known as Casp4), making them functionally Casp1 Casp11 double knockouts. Previous studies have shown that these mice are more susceptible to infections with microbial pathogens, including the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium), but the individual contributions of caspase-1 and caspase-11 to this phenotype are not known. Here we show that non-canonical caspase-11 activation contributes to macrophage death during S. typhimurium infection. Toll-like receptor 4 (TLR4)-dependent and TIR-domain-containing adaptor-inducing interferon-ß (TRIF)-dependent interferon-ß production is crucial for caspase-11 activation in macrophages, but is only partially required for pro-caspase-11 expression, consistent with the existence of an interferon-inducible activator of caspase-11. Furthermore, Casp1(-/-) mice were significantly more susceptible to infection with S. typhimurium than mice lacking both pro-inflammatory caspases (Casp1(-/-) Casp11(-/-)). This phenotype was accompanied by higher bacterial counts, the formation of extracellular bacterial microcolonies in the infected tissue and a defect in neutrophil-mediated clearance. These results indicate that caspase-11-dependent cell death is detrimental to the host in the absence of caspase-1-mediated innate immunity, resulting in extracellular replication of a facultative intracellular bacterial pathogen.


Subject(s)
Caspases/metabolism , Disease Susceptibility/enzymology , Salmonella Infections, Animal/enzymology , Adjuvants, Immunologic/pharmacology , Animals , Caspases, Initiator , Cell Death , Cells, Cultured , Gene Expression Regulation , Inflammasomes/immunology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/microbiology , Mice , Mice, Knockout , Salmonella Infections, Animal/genetics , Salmonella typhimurium/physiology , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 112(46): 14337-42, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26489655

ABSTRACT

Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.


Subject(s)
Adherens Junctions/metabolism , Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Staphylococcal Infections/metabolism , Vasculitis/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Adherens Junctions/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Bacterial Toxins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Hemolysin Proteins/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Knockout , Staphylococcal Infections/genetics , Staphylococcal Infections/pathology , Vasculitis/genetics , Vasculitis/microbiology , Vasculitis/pathology
5.
Proc Natl Acad Sci U S A ; 111(44): 15780-5, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331868

ABSTRACT

Natural populations show striking heterogeneity in their ability to transmit disease. For example, a minority of infected individuals known as superspreaders carries out the majority of pathogen transmission events. In a mouse model of Salmonella infection, a subset of infected hosts becomes superspreaders, shedding high levels of bacteria (>10(8) cfu per g of feces) but remain asymptomatic with a dampened systemic immune state. Here we show that superspreader hosts remain asymptomatic when they are treated with oral antibiotics. In contrast, nonsuperspreader Salmonella-infected hosts that are treated with oral antibiotics rapidly shed superspreader levels of the pathogen but display signs of morbidity. This morbidity is linked to an increase in inflammatory myeloid cells in the spleen followed by increased production of acute-phase proteins and proinflammatory cytokines. The degree of colonic inflammation is similar in antibiotic-treated superspreader and nonsuperspreader hosts, indicating that the superspreader hosts are tolerant of antibiotic-mediated perturbations in the intestinal tract. Importantly, neutralization of acute-phase proinflammatory cytokines in antibiotic-induced superspreaders suppresses the expansion of inflammatory myeloid cells and reduces morbidity. We describe a unique disease-associated tolerance to oral antibiotics in superspreaders that facilitates continued transmission of the pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Salmonella Infections/transmission , Salmonella typhimurium/pathogenicity , Administration, Oral , Animals , Cytokines/immunology , Disease Transmission, Infectious , Mice , Myeloid Cells/immunology , Myeloid Cells/pathology , Salmonella Infections/drug therapy , Salmonella Infections/immunology , Salmonella typhimurium/immunology
6.
Gastroenterology ; 148(7): 1392-404.e21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25725293

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. METHODS: We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. RESULTS: H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5(+) stem cell proliferation, and up-regulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. In addition, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. CONCLUSIONS: H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.


Subject(s)
Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/growth & development , Receptors, G-Protein-Coupled/metabolism , Stem Cells/microbiology , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomarkers/metabolism , Cell Proliferation , Disease Models, Animal , Gastric Mucosa/metabolism , Genotype , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions , Humans , Hyperplasia , Kinetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Organoids , Phenotype , Receptors, G-Protein-Coupled/genetics , Stem Cells/metabolism , Stem Cells/pathology , Tissue Culture Techniques , Virulence
7.
J Biol Chem ; 288(6): 4321-33, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23209296

ABSTRACT

Recent studies of epithelial tissues have revealed the presence of tissue-specific stem cells that are able to establish multiple cell lineages within an organ. The stem cells give rise to progenitors that replicate before differentiating into specific cell lineages. The mechanism by which homeostasis is established between proliferating stem or progenitor cells and terminally differentiated cells is unclear. This study demonstrates that Agr2 expression by mucous neck cells in the stomach promotes the differentiation of multiple cell lineages while also inhibiting the proliferation of stem or progenitor cells. When Agr2 expression is absent, gastric mucous neck cells increased in number as does the number of proliferating cells. Agr2 expression loss also resulted in the decline of terminally differentiated cells, which was supplanted by cells that exhibited nuclear SOX9 labeling. Sox9 expression has been associated with progenitor and stem cells. Similar effects of the Agr2 null on cell proliferation in the intestine were also observed. Agr2 consequently serves to maintain the balance between proliferating and differentiated epithelial cells.


Subject(s)
Cell Differentiation , Cell Lineage , Gene Expression Regulation, Developmental , Mucoproteins/biosynthesis , Stem Cells/metabolism , Stomach/embryology , Animals , Cell Proliferation , Hyperplasia , Mice , Mice, Mutant Strains , Mucoproteins/genetics , Oncogene Proteins , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Stem Cells/pathology , Stomach/pathology
8.
Blood ; 117(4): 1311-4, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21081713

ABSTRACT

Activation of the adaptive Ire1-XBP1 pathway has been identified in many solid tumors and hematologic malignancies, including multiple myeloma (MM). Here, we report the identification of STF-083010, a novel small-molecule inhibitor of Ire1. STF-083010 inhibited Ire1 endonuclease activity, without affecting its kinase activity, after endoplasmic reticulum stress both in vitro and in vivo. Treatment with STF-083010 showed significant antimyeloma activity in model human MM xenografts. Similarly, STF-083010 was preferentially toxic to freshly isolated human CD138(+) MM cells compared with other similarly isolated cell populations. The identification of this novel Ire1 inhibitor supports the hypothesis that the Ire1-XBP1 axis is a promising target for anticancer therapy, especially in the context of MM.


Subject(s)
Cytotoxins/pharmacology , Endoribonucleases/antagonists & inhibitors , Multiple Myeloma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Sulfonamides/pharmacology , Thiophenes/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Boronic Acids/administration & dosage , Bortezomib , Cells, Cultured , Cytotoxins/therapeutic use , Dose-Response Relationship, Drug , Humans , Mice , Models, Biological , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazines/administration & dosage , Substrate Specificity/drug effects , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Thiophenes/administration & dosage , Thiophenes/therapeutic use , Xenograft Model Antitumor Assays
9.
Can J Urol ; 20(2): 6672-81, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23587506

ABSTRACT

INTRODUCTION: There is currently a great deal of interest in the possible use of focal therapies for prostate cancer, since such treatments offer the prospect for control or cure of the primary disease with minimal side effects. Many forms of thermal therapy have been proposed for focal ablation of prostate cancer, including laser, high intensity ultrasound and cryotherapy. This review will demonstrate the important roles that magnetic resonance imaging (MRI) guidance can offer to such focal ablation, focusing on the use of high intensity ultrasonic applicators as an example of one promising technique. MATERIALS AND METHODS: Transurethral and interstitial high intensity ultrasonic applicators, designed specifically for ablation of prostate tissue were tested extensively in vivo in a canine model. The roles of MRI in positioning the devices, monitoring prostate ablation, and depicting ablated tissue were assessed using appropriate MRI sequences. RESULTS: MRI guidance provides a very effective tool for the positioning of ablative devices in the prostate, and thermal monitoring successfully predicted ablation of prostate tissue when a threshold of 52 ºC was achieved. Contrast enhanced MRI accurately depicted the distribution of ablated prostate tissue, which is resorbed at 30 days. CONCLUSIONS: Guidance of thermal therapies for focal ablation of prostate cancer will likely prove critically dependent on MRI functioning in four separate roles. Our studies indicate that in three roles: device positioning; thermal monitoring of prostate ablation; and depiction of ablated prostate tissue, MR techniques are highly accurate and likely to be of great benefit in focal prostate cancer ablation. A fourth critical role, identification of cancer within the gland for targeting of thermal therapy, is more problematic at present, but will likely become practical with further technological advances.


Subject(s)
Ablation Techniques/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Animals , Cryotherapy , Disease Models, Animal , Dogs , Humans , Laser Therapy , Male , Ultrasonic Therapy
10.
Nano Lett ; 12(1): 281-6, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22172022

ABSTRACT

The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)ß(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future.


Subject(s)
Microscopy, Fluorescence/methods , Molecular Imaging/methods , Neoplasms, Experimental/pathology , Quantum Dots , Whole Body Imaging/methods , Animals , Mice , Mice, Inbred BALB C , Mice, Nude
11.
Nano Lett ; 12(7): 3369-77, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22650417

ABSTRACT

Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.


Subject(s)
Disease Models, Animal , Ear Neoplasms/blood supply , Nanoparticles/chemistry , Nanotechnology , Neoplasms, Experimental/blood supply , Animals , Ear Neoplasms/pathology , Humans , Mice , Microscopy, Fluorescence , Nanotubes, Carbon/chemistry , Neoplasms, Experimental/pathology , Particle Size , Quantum Dots , Surface Properties
12.
J Exp Med ; 199(2): 231-41, 2004 Jan 19.
Article in English | MEDLINE | ID: mdl-14734525

ABSTRACT

Host-adapted strains of Salmonella are capable of establishing a persistent infection in their host often in the absence of clinical disease. The mouse model of Salmonella infection has primarily been used as a model for the acute systemic disease. Therefore, the sites of long-term S. typhimurium persistence in the mouse are not known nor are the mechanisms of persistent infection clearly understood. Here, we show that S. typhimurium can persist for as long as 1 yr in the mesenteric lymph nodes (MLNs) of 129sv Nramp1(+)(/)(+) (Slc11a1(+)(/)(+)) mice despite the presence of high levels of anti-S. typhimurium antibody. Tissues from 129sv mice colonized for 60 d contain numerous inflammatory foci and lesions with features resembling S. typhi granulomas. Tissues from mice infected for 365 d have very few organized inflammatory lesions, but the bacteria continue to persist within macrophages in the MLN and the animals generally remain disease-free. Finally, chronically infected mice treated with an interferon-gamma neutralizing antibody exhibited symptoms of acute systemic infection, with evidence of high levels of bacterial replication in most tissues and high levels of fecal shedding. Thus, interferon-gamma, which may affect the level of macrophage activation, plays an essential role in the control of the persistent S. typhimurium infection in mice.


Subject(s)
Cation Transport Proteins/physiology , Interferon-gamma/antagonists & inhibitors , Macrophages/immunology , Macrophages/microbiology , Salmonella typhimurium/pathogenicity , Animals , Cation Transport Proteins/genetics , Chronic Disease , Lymph Nodes/immunology , Lymph Nodes/microbiology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Neutralization Tests , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/immunology , Salmonella typhimurium/isolation & purification , Time Factors
13.
Brain Behav Immun ; 24(1): 127-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19765644

ABSTRACT

In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.


Subject(s)
Carcinoma, Squamous Cell/immunology , Immunity, Cellular/immunology , Stress, Psychological/immunology , Animals , Behavior, Animal/physiology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Count , Chemokines/biosynthesis , Cytokines/biosynthesis , Female , Gene Expression , Immunohistochemistry , Kaplan-Meier Estimate , Mice , Stress, Psychological/psychology , Survival , Ultraviolet Rays
14.
Comp Med ; 70(6): 532-541, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33203505

ABSTRACT

Skeletal malformations in captive-bred, adult Xenopus spp., have not previously been reported. Here we describe 10 sexually mature, genetically modified laboratory frogs (6 Xenopus laevis and 4 Xenopus tropicalis) with axial skeletal abnormalities. The young adult frogs were described by veterinary staff as presenting with "hunchbacks," but were otherwise considered to be in good health. All affected frogs were genetically engineered using various techniques: transcription activator-like effector nucleases (TALEN) editing using thyroid hormone receptor α TALEN mRNA, restriction enzyme-mediated integration methods involving insertion of the inducible transgene pCAR/TRDN, or via I-SceI meganuclease transgenesis using either pDRTREdpTR-HS4 or pDPCrtTA-TREG-HS4 plasmid sequences. Radiographic findings (6 frogs) and gross necropsy (10 frogs) revealed vertebral column malformations and sacroiliac deformities that resulted in moderate to severe kyphosis and kyphoscoliosis. These findings were confirmed and additional skeletal abnormalities were identified using computed tomography to create a 3D reconstruction of 4 frogs. Additional findings visible on the 3D reconstructions included incomplete vertebral segmentation, malformed transverse processes, and a short and/or curved urostyle. Histopathologic findings included misshapen intervertebral joints with nonconforming articular surfaces, narrowed joint cavities, flattened or irregularly-formed articular cartilage, irregular maturation lines and nonpolarized chondrocytes, excess fibrocartilage, and evidence of irregular bone resorption and growth. While the specific etiology of the vertebral skeletal abnormalities remains unclear, possibilities include: 1) egg/oocyte physical manipulation (dejellying, microinjection, fertilization, etc.), 2) induction and expression of the transgenes, 3) inactivation (knockout) of existing genes by insertional mutagenesis, or 4) a combination of the above. Furthermore, the possibility of undetected changes in the macro or microenvironment, or a feature of the genetic background of the affected frogs cannot be ruled out.


Subject(s)
Gene Transfer Techniques , Animals , Animals, Genetically Modified , Humans , RNA, Messenger , Transgenes , Xenopus/genetics , Xenopus laevis/genetics
15.
Nanotheranostics ; 4(4): 210-223, 2020.
Article in English | MEDLINE | ID: mdl-32802731

ABSTRACT

Rationale: Localized blood-brain barrier (BBB) opening can be achieved with minimal to no tissue damage by applying pulsed focused ultrasound alongside a low microbubble (MB) dose. However, relatively little is known regarding how varying treatment parameters affect the degree of neuroinflammation following BBB opening. The goal of this study was to evaluate the activation of an inflammatory response following BBB opening as a function of applied acoustic pressure using two different microbubble doses. Methods: Mice were treated with 650 kHz ultrasound using varying acoustic peak negative pressures (PNPs) using two different MB doses, and activation of an inflammatory response, in terms of microglial and astrocyte activation, was assessed one hour following BBB opening using immunohistochemical staining. Harmonic and subharmonic acoustic emissions (AEs) were monitored for all treatments with a passive cavitation detector, and contrast-enhanced magnetic resonance imaging (CE-MRI) was performed following BBB opening to quantify the degree of opening. Hematoxylin and eosin-stained slides were assessed for the presence of microhemorrhage and edema. Results: For each MB dose, BBB opening was achieved with minimal activation of microglia and astrocytes using a PNP of 0.15 MPa. Higher PNPs were associated with increased activation, with greater increases associated with the use of the higher MB dose. Additionally, glial activation was still observed in the absence of histopathological findings. We found that CE-MRI was most strongly correlated with the degree of activation. While acoustic emissions were not predictive of microglial or astrocyte activation, subharmonic AEs were strongly associated with marked and severe histopathological findings. Conclusions: Our study demonstrated that there were mild histologic changes and activation of the acute inflammatory response using PNPs ranging from 0.15 MPa to 0.20 MPa, independent of MB dose. However, when higher PNPs of 0.25 MPa or above were applied, the same applied PNP resulted in more severe and widespread histological findings and activation of the acute inflammatory response when using the higher MB dose. The potential activation of the inflammatory response following ultrasound-mediated BBB opening should be considered when treating patients to maximize therapeutic benefit.


Subject(s)
Blood-Brain Barrier/radiation effects , Drug Delivery Systems/methods , Inflammation/metabolism , Microbubbles , Ultrasonic Therapy/methods , Animals , Astrocytes/metabolism , Brain Chemistry/radiation effects , Female , Mice , Microglia/metabolism , Ultrasonic Waves
16.
Brain Stimul ; 13(3): 804-814, 2020.
Article in English | MEDLINE | ID: mdl-32289711

ABSTRACT

BACKGROUND: Neuromodulation by transcranial focused ultrasound (FUS) offers the potential to non-invasively treat specific brain regions, with treatment location verified by magnetic resonance acoustic radiation force imaging (MR-ARFI). OBJECTIVE: To investigate the safety of these methods prior to widespread clinical use, we report histologic findings in two large animal models following FUS neuromodulation and MR-ARFI. METHODS: Two rhesus macaques and thirteen Dorset sheep were studied. FUS neuromodulation was targeted to the primary visual cortex in rhesus macaques and to subcortical locations, verified by MR-ARFI, in eleven sheep. Both rhesus macaques and five sheep received a single FUS session, whereas six sheep received repeated sessions three to six days apart. The remaining two control sheep did not receive ultrasound but otherwise underwent the same anesthetic and MRI procedures as the eleven experimental sheep. Hematoxylin and eosin-stained sections of brain tissue (harvested zero to eleven days following FUS) were evaluated for tissue damage at FUS and control locations as well as tissue within the path of the FUS beam. TUNEL staining was used to evaluate for the presence of apoptosis in sheep receiving high dose FUS. RESULTS: No FUS-related pre-mortem histologic findings were observed in the rhesus macaques or in any of the examined sheep. Extravascular red blood cells (RBCs) were present within the meninges of all sheep, regardless of treatment group. Similarly, small aggregates of perivascular RBCs were rarely noted in non-target regions of neural parenchyma of FUS-treated (8/11) and untreated (2/2) sheep. However, no concurrent histologic abnormalities were observed, consistent with RBC extravasation occurring as post-mortem artifact following brain extraction. Sheep within the high dose FUS group were TUNEL-negative at the targeted site of FUS. CONCLUSIONS: The absence of FUS-related histologic findings suggests that the neuromodulation and MR-ARFI protocols evaluated do not cause tissue damage.


Subject(s)
Brain/diagnostic imaging , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods , Transcutaneous Electric Nerve Stimulation/methods , Ultrasonography, Doppler, Transcranial/methods , Animals , Brain/physiology , Macaca mulatta , Magnetic Resonance Spectroscopy/methods , Male , Sheep
17.
J Vasc Interv Radiol ; 20(2): 252-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19091600

ABSTRACT

PURPOSE: To evaluate the feasibility of magnetic resonance (MR) imaging-guided percutaneous cryoablation of normal canine prostates and to identify MR imaging features that accurately predict the area of tissue damage at a microscopic level. MATERIALS AND METHODS: Six adult male mixed-breed dogs were anesthetized, intubated, and placed in a 0.5-T open MR imaging system. A receive-only endorectal coil was placed, and prostate location and depth were determined on T1-weighted fast spin-echo (FSE) MR imaging. After placement of cryoprobes and temperature sensors, three freezing protocols were used to ablate prostate tissue. Ice ball formation was monitored with T1-weighted FSE imaging. Tissue necrosis area was assessed with contrast-enhanced weighted MR imaging and compared with histopathologic findings. RESULTS: A total of 12 cryolesions (mean size, 1.2 cm) were bilaterally created in six prostates. Ice ball formation was oval and signal-free on T1-weighted FSE sequences in all cases. Postprocedural contrast-enhanced MR imaging typically showed a nonenhancing area of low signal intensity centrally located within the frozen area, surrounded by a bright enhancing rim in all cases. On histopathologic examination, two distinct zones were identified within cryolesions. Centrally, a necrotic zone with complete cellular destruction and hemorrhage was found. Between this necrotic zone and normal glandular tissue, a zone of fragmented and intact glands, interstitial edema, and rare acute inflammatory cells was seen. Correlation between nonenhancement on contrast-enhanced weighted MR images and tissue necrosis on pathologic examination was consistent within all six dogs. CONCLUSIONS: MR imaging-guided cryoablation of the prostate is technically feasible. The nonenhancing area on postablation contrast-enhanced weighted MR imaging accurately predicts the area of cryoablation-induced tissue necrosis on pathologic analysis.


Subject(s)
Cryosurgery/methods , Magnetic Resonance Imaging/methods , Prostate/pathology , Prostate/surgery , Prostatectomy/methods , Surgery, Computer-Assisted/methods , Animals , Dogs , Feasibility Studies , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
18.
Infect Immun ; 76(1): 403-16, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17967858

ABSTRACT

Transmission is an essential stage of a pathogen's life cycle and remains poorly understood. We describe here a model in which persistently infected 129X1/SvJ mice provide a natural model of Salmonella enterica serovar Typhimurium transmission. In this model only a subset of the infected mice, termed supershedders, shed high levels (>10(8) CFU/g) of Salmonella serovar Typhimurium in their feces and, as a result, rapidly transmit infection. While most Salmonella serovar Typhimurium-infected mice show signs of intestinal inflammation, only supershedder mice develop colitis. Development of the supershedder phenotype depends on the virulence determinants Salmonella pathogenicity islands 1 and 2, and it is characterized by mucosal invasion and, importantly, high luminal abundance of Salmonella serovar Typhimurium within the colon. Immunosuppression of infected mice does not induce the supershedder phenotype, demonstrating that the immune response is not the main determinant of Salmonella serovar Typhimurium levels within the colon. In contrast, treatment of mice with antibiotics that alter the health-associated indigenous intestinal microbiota rapidly induces the supershedder phenotype in infected mice and predisposes uninfected mice to the supershedder phenotype for several days. These results demonstrate that the intestinal microbiota plays a critical role in controlling Salmonella serovar Typhimurium infection, disease, and transmissibility. This novel model should facilitate the study of host, pathogen, and intestinal microbiota factors that contribute to infectious disease transmission.


Subject(s)
Intestines/microbiology , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Virulence Factors/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Female , Immunocompromised Host , Mice , Time Factors
19.
Med Phys ; 35(12): 5934-43, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19175148

ABSTRACT

Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems.


Subject(s)
Anthropometry/methods , Phantoms, Imaging , Algorithms , Animals , Blood Vessels/pathology , Humans , Image Processing, Computer-Assisted , Lung/pathology , Models, Anatomic , Models, Statistical , Myocardium/pathology , Radiography, Thoracic/methods , Silicones/chemistry , Swine , Tomography, X-Ray Computed/methods
20.
Med Phys ; 35(5): 2081-93, 2008 May.
Article in English | MEDLINE | ID: mdl-18561684

ABSTRACT

The purpose of this study was to explore the feasibility and performance of a multi-sectored tubular array transurethral ultrasound applicator for prostate thermal therapy, with potential to provide dynamic angular and length control of heating under MR guidance without mechanical movement of the applicator. Test configurations were fabricated, incorporating a linear array of two multi-sectored tubular transducers (7.8-8.4 MHz, 3 mm OD, 6 mm length), with three 120 degrees independent active sectors per tube. A flexible delivery catheter facilitated water cooling (100 ml min(-1)) within an expandable urethral balloon (35 mm long x 10 mm diameter). An integrated positioning hub allows for rotating and translating the transducer assembly within the urethral balloon for final targeting prior to therapy delivery. Rotational beam plots indicate approximately 90 degrees-100 degrees acoustic output patterns from each 120 degrees transducer sector, negligible coupling between sectors, and acoustic efficiencies between 41% and 53%. Experiments were performed within in vivo canine prostate (n = 3), with real-time MR temperature monitoring in either the axial or coronal planes to facilitate control of the heating profiles and provide thermal dosimetry for performance assessment. Gross inspection of serial sections of treated prostate, exposed to TTC (triphenyl tetrazolium chloride) tissue viability stain, allowed for direct assessment of the extent of thermal coagulation. These devices created large contiguous thermal lesions (defined by 52 degrees C maximum temperature, t43 = 240 min thermal dose contours, and TTC tissue sections) that extended radially from the applicator toward the border of the prostate (approximately15 mm) during a short power application (approximately 8-16 W per active sector, 8-15 min), with approximately 200 degrees or 360 degrees sector coagulation demonstrated depending upon the activation scheme. Analysis of transient temperature profiles indicated progression of lethal temperature and thermal dose contours initially centered on each sector that coalesced within approximately 5 min to produce uniform and contiguous zones of thermal destruction between sectors, with smooth outer boundaries and continued radial propagation in time. The dimension of the coagulation zone along the applicator was well-defined by positioning and active array length. Although not as precise as rotating planar and curvilinear devices currently under development for MR-guided procedures, advantages of these multi-sectored transurethral applicators include a flexible delivery catheter and that mechanical manipulation of the device using rotational motors is not required during therapy. This multi-sectored tubular array transurethral ultrasound technology has demonstrated potential for relatively fast and reasonably conformal targeting of prostate volumes suitable for the minimally invasive treatment of BPH and cancer under MR guidance, with further development warranted.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Animals , Dogs , Equipment Design , Humans , Hyperthermia, Induced , Male , Prostate/pathology , Prostatic Hyperplasia/pathology , Radiometry , Temperature , Transducers , Ultrasonic Therapy , Ultrasonography , Urinary Bladder/pathology
SELECTION OF CITATIONS
SEARCH DETAIL