Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Biol Chem ; 299(6): 104749, 2023 06.
Article in English | MEDLINE | ID: mdl-37100284

ABSTRACT

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Subject(s)
Antiviral Agents , COVID-19 , Mpox (monkeypox) , Vaccinia , Animals , Mice , Antiviral Agents/pharmacology , Mpox (monkeypox)/drug therapy , SARS-CoV-2/drug effects , Vaccinia/drug therapy , Vaccinia virus/drug effects
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34006641

ABSTRACT

Familial mutations of the protein kinase A (PKA) R1α regulatory subunit lead to a generalized predisposition for a wide range of tumors, from pituitary adenomas to pancreatic and liver cancers, commonly referred to as Carney complex (CNC). CNC mutations are known to cause overactivation of PKA, but the molecular mechanisms underlying such kinase overactivity are not fully understood in the context of the canonical cAMP-dependent activation of PKA. Here, we show that oligomerization-induced sequestration of R1α from the catalytic subunit of PKA (C) is a viable mechanism of PKA activation that can explain the CNC phenotype. Our investigations focus on comparative analyses at the level of structure, unfolding, aggregation, and kinase inhibition profiles of wild-type (wt) PKA R1α, the A211D and G287W CNC mutants, as well as the cognate acrodysostosis type 1 (ACRDYS1) mutations A211T and G287E. The latter exhibit a phenotype opposite to CNC with suboptimal PKA activation compared with wt. Overall, our results show that CNC mutations not only perturb the classical cAMP-dependent allosteric activation pathway of PKA, but also amplify significantly more than the cognate ACRDYS1 mutations nonclassical and previously unappreciated activation pathways, such as oligomerization-induced losses of the PKA R1α inhibitory function.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/chemistry , Cyclic AMP/chemistry , Mutation , Protein Subunits/chemistry , Allosteric Regulation , Animals , Binding Sites , Carney Complex/enzymology , Carney Complex/genetics , Carney Complex/pathology , Cattle , Crystallography, X-Ray , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Dysostoses/enzymology , Dysostoses/genetics , Dysostoses/pathology , Enzyme Activation , Gene Expression , Humans , Intellectual Disability/enzymology , Intellectual Disability/genetics , Intellectual Disability/pathology , Kinetics , Models, Molecular , Osteochondrodysplasias/enzymology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
3.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35526097

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
4.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34687845

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , T-Lymphocytes
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674550

ABSTRACT

Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.


Subject(s)
Extracellular Vesicles , Virus Diseases , Viruses , Humans , Extracellular Vesicles/metabolism , Virus Diseases/metabolism , Antiviral Agents/metabolism
6.
Bioinformatics ; 37(8): 1176-1177, 2021 05 23.
Article in English | MEDLINE | ID: mdl-32926121

ABSTRACT

MOTIVATION: Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION: CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.


Subject(s)
Data Analysis , Software , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Proteins
7.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33578036

ABSTRACT

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/pharmacology , Biological Assay , Lectins/pharmacology , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Genes, Reporter , Glycosylation/drug effects , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization/drug effects , COVID-19 Drug Treatment
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668756

ABSTRACT

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Binding Sites , COVID-19/immunology , HEK293 Cells , Host Microbial Interactions , Humans , Models, Molecular , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , Sequence Alignment , COVID-19 Drug Treatment
9.
Biophys J ; 119(6): 1135-1146, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32882185

ABSTRACT

Quantifying chemical substituent contributions to ligand-binding free energies is challenging due to nonadditive effects. Protein allostery is a frequent cause of nonadditivity, but the underlying allosteric mechanisms often remain elusive. Here, we propose a general NMR-based approach to elucidate such mechanisms and we apply it to the HCN4 ion channel, whose cAMP-binding domain is an archetypal conformational switch. Using NMR, we show that nonadditivity arises not only from concerted conformational transitions, but also from conformer-specific effects, such as steric frustration. Our results explain how affinity-reducing functional groups may lead to affinity gains if combined. Surprisingly, our approach also reveals that nonadditivity depends markedly on the receptor conformation. It is negligible for the inhibited state but highly significant for the active state, opening new opportunities to tune potency and agonism of allosteric effectors.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Allosteric Regulation , Entropy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ligands , Molecular Conformation , Protein Binding , Protein Conformation
10.
J Biol Chem ; 292(15): 6414-6428, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28174302

ABSTRACT

The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.


Subject(s)
Cyclic AMP/chemistry , Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Mutation, Missense , Potassium Channels/chemistry , Potassium Channels/metabolism , Sick Sinus Syndrome/congenital , Amino Acid Substitution , Cyclic AMP/genetics , Female , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Muscle Proteins/genetics , Potassium Channels/genetics , Protein Domains , Sick Sinus Syndrome/genetics , Sick Sinus Syndrome/metabolism , Structure-Activity Relationship
11.
J Am Chem Soc ; 140(30): 9624-9637, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30016089

ABSTRACT

Classical uncompetitive inhibitors are potent pharmacological modulators of enzyme function. Since they selectively target enzyme-substrate complexes (E:S), their inhibitory potency is amplified by increasing substrate concentrations. Recently, an unconventional uncompetitive inhibitor, called CE3F4R, was discovered for the exchange protein activated by cAMP isoform 1 (EPAC1). Unlike conventional uncompetitive inhibitors, CE3F4R is uncompetitive with respect to an allosteric effector, cAMP, as opposed to the substrate (i.e., CE3F4R targets the E:cAMP rather than the E:S complex). However, the mechanism of CE3F4R as an uncompetitive inhibitor is currently unknown. Here, we elucidate the mechanism of CE3F4R's action using NMR spectroscopy. Due to limited solubility and line broadening, which pose major challenges for traditional structural determination approaches, we resorted to a combination of protein- and ligand-based NMR experiments to comparatively analyze EPAC mutations, inhibitor analogs, and cyclic nucleotide derivatives that trap EPAC at different stages of activation. We discovered that CE3F4R binds within the EPAC cAMP-binding domain (CBD) at a subdomain interface distinct from the cAMP binding site, acting as a wedge that stabilizes a cAMP-bound mixed-intermediate. The mixed-intermediate includes attributes of both the apo/inactive and cAMP-bound/active states. In particular, the intermediate targeted by CE3F4R traps a CBD's hinge helix in its inactive conformation, locking EPAC into a closed domain topology that restricts substrate access to the catalytic domain. The proposed mechanism of action also explains the isoform selectivity of CE3F4R in terms of a single EPAC1 versus EPAC2 amino acid difference that destabilizes the active conformation of the hinge helix.


Subject(s)
Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/agonists , Guanine Nucleotide Exchange Factors/metabolism , Quinolines/metabolism , Allosteric Regulation , Allosteric Site , Catalytic Domain , Cyclic AMP/chemistry , Ligands , Models, Chemical , Molecular Conformation , Protein Binding , Proton Magnetic Resonance Spectroscopy , Quinolines/chemistry , Quinolines/pharmacology
12.
Immunol Cell Biol ; 96(9): 922-934, 2018 10.
Article in English | MEDLINE | ID: mdl-29617041

ABSTRACT

Nucleic acids are potential pathogen-associated or danger-associated molecular patterns that modulate immune responses and the development of autoimmune disorders. Class A scavenger receptors (SR-As) are a diverse group of pattern recognition receptors that recognize a variety of polyanionic ligands including nucleic acids. While SR-As are important for the recognition and internalization of extracellular dsRNA, little is known about extracellular DNA, despite its association with chronic infections and autoimmune disorders. In this study, we investigated the specificity of and requirement for SR-As in binding and internalizing different species, sequences and lengths of nucleic acids. We purified recombinant coiled-coil/collagenous and scavenger receptor cysteine-rich (SRCR) domains that have been implicated as potential ligand-binding domains. We detected a direct interaction of RNA and DNA species with the coiled-coil/collagenous domain, but not the SRCR domain. Despite the presence of additional surface receptors that bind nucleic acids, SR-As were found to be sufficient for nucleic acid binding and uptake in A549 human lung epithelial cells. Moreover, these findings suggest that the coiled-coil/collagenous domain of SR-As is sufficient to bind nucleic acids independent of species, sequence or length.


Subject(s)
Nucleic Acids/metabolism , RNA, Double-Stranded/metabolism , Scavenger Receptors, Class A/metabolism , Virus Internalization , A549 Cells , Amino Acid Sequence , Humans , Nucleic Acids/immunology , Receptors, Pattern Recognition , Scavenger Receptors, Class A/immunology
13.
Chem Rev ; 116(11): 6267-304, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27111288

ABSTRACT

The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.

14.
J Biol Chem ; 289(32): 22205-20, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24878962

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.


Subject(s)
Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Muscle Proteins/metabolism , Potassium Channels/metabolism , Amino Acid Sequence , Binding Sites , Cyclic CMP/metabolism , Electron Spin Resonance Spectroscopy , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Ion Channel Gating , Membrane Potentials , Models, Molecular , Molecular Sequence Data , Muscle Proteins/chemistry , Muscle Proteins/genetics , Nuclear Magnetic Resonance, Biomolecular , Potassium Channels/chemistry , Potassium Channels/genetics , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
15.
Biochem Soc Trans ; 42(1): 139-44, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24450641

ABSTRACT

Weak interactions mediated by dynamic linkers are key determinants of allosteric regulation in multidomain signalling proteins. However, the mechanisms of linker-dependent control have remained largely elusive. In the present article, we review an allosteric model introduced recently to explain how signalling proteins effectively sense and respond to weak interactions, such as those elicited by flexible linkers flanking globular domains. Central to this model is the idea that near degeneracy within the free energy landscape of conformational selection maximally amplifies the response to weak (~2RT), but conformation-selective interactions. The model was tested as proof of principle using the prototypical regulatory subunit (R) of protein kinase A and led to the unanticipated finding that dynamic linkers control kinase activation and inhibition by tuning the inhibitory pre-equilibrium of a minimally populated intermediate (apo R). A practical implication of the proposed model is a new strategy to design kinase inhibitors with enhanced potency through frustration-relieving mutations.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Cyclic AMP/metabolism , Allosteric Regulation , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/chemistry , Drug Design , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Second Messenger Systems , Thermodynamics
16.
Biochem Soc Trans ; 42(2): 302-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24646235

ABSTRACT

Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.


Subject(s)
Cyclic AMP/metabolism , Magnetic Resonance Spectroscopy/methods , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Signal Transduction/physiology
17.
Nat Commun ; 15(1): 7267, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179564

ABSTRACT

Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with "off-the-shelf" targeted therapies.


Subject(s)
Immunotherapy , Oncolytic Virotherapy , Oncolytic Viruses , Receptor, ErbB-2 , T-Lymphocytes , Trastuzumab , Vaccinia virus , Animals , Female , Humans , Immunotherapy/methods , Mice , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Receptor, ErbB-2/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Vaccinia virus/genetics , Vaccinia virus/immunology , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Tumor Microenvironment/immunology , Vesiculovirus/genetics , Vesiculovirus/immunology , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
18.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37822719

ABSTRACT

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

19.
Nat Commun ; 14(1): 3035, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37236967

ABSTRACT

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Genetic Vectors/genetics , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Promoter Regions, Genetic/genetics
20.
Front Immunol ; 13: 1050250, 2022.
Article in English | MEDLINE | ID: mdl-36713447

ABSTRACT

Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies.


Subject(s)
Neoplasms , Poxviridae , Humans , Animals , Mice , Genetic Vectors/genetics , Vaccinia virus , Poxviridae/genetics , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL