ABSTRACT
Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.
Subject(s)
Chromosomes, Human, X , Intellectual Disability , Penetrance , Humans , Male , Female , Chromosomes, Human, X/genetics , Intellectual Disability/genetics , Child , Adult , Adolescent , Child, Preschool , Phenotype , Chromosome Duplication/genetics , Gene Duplication , Pedigree , Young AdultABSTRACT
Microdeletions encompassing 14q11.2 locus, involving SUPT16H and CHD8, were shown to cause developmental delay, intellectual disability, autism spectrum disorders and macrocephaly. Variations leading to CHD8 haploinsufficiency or loss of function were also shown to lead to a similar phenotype. Recently, a 14q11.2 microduplication syndrome, encompassing CHD8 and SUPT16H, has been described, highlighting the importance of a tight control of at least CHD8 gene-dosage for a normal development. There have been only a few reports of 14q11.2 microduplications. Patients showed variable neurodevelopmental issues of variable severity. Breakpoints of the microduplications were non-recurrent, making interpretation of the CNV and determination of their clinical relevance difficult. Here, we report on two patients with 14q11.2 microduplication encompassing CHD8 and SUPT16H, one of whom had normal intelligence. Review of previous reports describing patients with comparable microduplications allowed for a more precise delineation of the condition and widening of the phenotypic spectrum.
Subject(s)
Brain/pathology , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Gene Duplication , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Transcription Factors/genetics , Brain/diagnostic imaging , Child , Female , Humans , Male , Neurodevelopmental Disorders/diagnostic imaging , PhenotypeABSTRACT
Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a â¼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.
Subject(s)
Body Mass Index , Chromosomes, Human, Pair 16/genetics , Gene Dosage/genetics , Obesity/genetics , Phenotype , Thinness/genetics , Adolescent , Adult , Aged , Aging , Body Height/genetics , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Comparative Genomic Hybridization , Developmental Disabilities/genetics , Energy Metabolism/genetics , Europe , Female , Gene Duplication/genetics , Gene Expression Profiling , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Head/anatomy & histology , Heterozygote , Humans , Infant , Infant, Newborn , Male , Mental Disorders/genetics , Middle Aged , Mutation/genetics , North America , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Deletion/genetics , Transcription, Genetic , Young AdultABSTRACT
Supravalvular aortic aneurysms are less frequent than abdominal ones. Among Supravalvular aortic aneurysm aetiologies, we focused on dystrophic lesions as they can be secondary to genetic causes such as elastin anomaly. We report on a familial 7q11.23 triplication - including the ELN gene - segregating with a supravalvular aortic aneurysm. During her first pregnancy, our index patient was diagnosed with tuberous sclerosis and with a Supravalvular aortic aneurysm. The foetus was affected equally. For the second pregnancy, parents applied for preimplantation diagnosis, and a subsequent prenatal diagnosis was offered to the couple, comprising TSC1 molecular analysis, karyotype, and multiplex ligation probe amplification. TSC1 mutation was not found on foetal deoxyribo nucleic acid. Foetal karyotype was normal, but multiplex ligation probe amplification detected a 7q11.23 duplication. Quantitative-polymerase chain reaction and array-comparative genomic hybridisation carried out to further assess this chromosome imbalance subsequently identified a 7q11.23 triplication involving ELN and LIMK1. Foetal heart ultrasound identified a Supravalvular aortic aneurysm. A familial screening was offered for the 7q11.23 triplication and, when found, heart ultrasound was performed. The triplication was diagnosed in our index case as well as in her first child. Of the 17 individuals from this family, 11 have the triplication. Of the 11 individuals with the triplication, 10 were identified to have a supravalvular aortic aneurysm. Of them, two individuals received a medical treatment and one individual needed surgery. We provide evidence of supravalvular aortic aneurysm segregating with 7q11.23 triplication in this family. We would therefore recommend cardiac surveillance for individuals with 7q11.23 triplication. It would also be interesting to offer a quantitative-polymerase chain reaction or an array-comparative genomic hybridisation to a larger cohort of patients presenting with isolated supravalvular aortic aneurysm, as it may provide further information.
Subject(s)
Aortic Aneurysm, Thoracic/genetics , Genetic Predisposition to Disease/genetics , Tuberous Sclerosis/genetics , Adult , Aged , Aortic Aneurysm, Thoracic/complications , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nucleic Acid Hybridization , Polymerase Chain Reaction , Pregnancy , Prenatal Diagnosis , Tuberous Sclerosis/complications , Ultrasonography, Prenatal , Young AdultABSTRACT
BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Developmental Disabilities/genetics , Phenotype , Adolescent , Adult , Body Mass Index , Child , Child Development Disorders, Pervasive/diagnosis , Developmental Disabilities/diagnosis , Female , Gene Order , Heterozygote , Humans , Intelligence Tests , Male , Syndrome , Young AdultABSTRACT
OBJECTIVE: Alveolar capillary dysplasia (ACD) is one of the causes of pulmonary hypertension. Its diagnosis is histological but new pathogenetic data have emerged. The aim of this study was to describe a French cohort of patients with ACD to improve the comprehension and the diagnosis of this pathology which is probably underdiagnosed. METHODS: A retrospective observational study was conducted in French hospitals. Patients born between 2005 and 2017, whose biological samples were sent to the French genetic reference centres, were included. Clinical, histological and genetic data were retrospectively collected. RESULTS: We presented a series of 21 patients. The mean of postmenstrual age at birth was 37.6 weeks. The first symptoms appeared on the median of 2.5 hours. Pulmonary hypertension was diagnosed in 20 patients out of 21. Two cases had prolonged survival (3.3 and 14 months). Histological analysis was done on lung tissue from autopsy (57.1% of cases) or from percutaneous biopsy (28.6%). FOXF1 was found abnormal in 15 patients (71.4%): 8 deletions and 7 point mutations. Two deletions were found by chromosomal microarray. CONCLUSION: This study is one of the largest clinically described series in literature. It seems crucial to integrate genetics early into diagnostic support. We propose a diagnostic algorithm for helping medical teams to improve diagnosis of this pathology.
Subject(s)
Forkhead Transcription Factors/genetics , Lung/pathology , Persistent Fetal Circulation Syndrome , Pulmonary Alveoli/abnormalities , Female , Humans , Infant, Newborn , Male , Mutation , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Pulmonary Alveoli/pathology , Retrospective StudiesABSTRACT
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.
Subject(s)
Abnormalities, Multiple/genetics , Calcinosis/genetics , Ear Diseases/genetics , Intellectual Disability/genetics , Muscular Atrophy/genetics , Nerve Tissue Proteins/genetics , Phenotype , Transcription Factors/genetics , Abnormalities, Multiple/pathology , Adolescent , Calcinosis/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Corpus Callosum/diagnostic imaging , Ear Diseases/pathology , Humans , Intellectual Disability/pathology , Muscular Atrophy/pathology , Mutation, MissenseABSTRACT
BACKGROUND: Chromosome 6q duplication syndrome is a chromosome abnormality associated with characteristic phenotypic features such as intellectual disability (ID), short stature, feeding difficulties, microcephaly, dysmorphic features (prominent forehead, downslanting palpebral fissures, flat nasal bridge, tented upper lip, micrognathia, short webbed neck) and joint contractures. Only a few cases of pure partial 6q trisomy have been published and the severity of the phenotype seems to depend on the breakpoint position. Unfortunately, most of these cases were identified using karyotyping or FISH, so breakpoints at the molecular level and thus gene content are not known. CASES PRESENTATION: We report the first two families with an interstitial 6q duplication identified by karyotyping where the gene content and breakpoints were characterized with microarray. In family 1, the 6q22.1q23.2 duplication was detected in a female patient with ID. In family 2, the 6q21q22.33 duplication was identified in a male fetus with multiple congenital malformations. In both families, the duplication seems to show phenotypic heterogeneity and in family 1 also incomplete penetrance suggesting the co-existence of an "additional hit" in affected patients. This "additional hit" was identified in the first family to be a microduplication in 16p11.2, a known susceptibility locus (SL) for neurodevelopmental disorders, that co-segregated with an abnormal phenotype in the affected family members. CONCLUSIONS: Our study shows that interstitial 6q21q23 duplication may represent a private variant that is benign, but may also contribute to developmental disorders of variable expressivity in a "multi-hit" model. Finding the "additional hit" within the family is therefore very important for genetic counseling and assessment of the CNV penetrance within the particular family.
ABSTRACT
6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei. The size of the deletion in the 14 living patients ranged from 1.73 to 7.84 Mb, and the fetus had the largest deletion (14 Mb). Genotype-phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype. Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1 haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to 6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the 6q16.2q16.3-deletion phenotype is discussed.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Obesity/genetics , Penetrance , Prader-Willi Syndrome/genetics , Repressor Proteins/genetics , Aborted Fetus , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Comparative Genomic Hybridization , Female , Genetic Association Studies , Humans , Infant , Male , Obesity/complications , Obesity/pathology , Polymorphism, Single Nucleotide , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/pathology , PregnancyABSTRACT
Proximal region of chromosome 15 long arm is rich in duplicons that, define five breakpoints (BP) for 15q rearrangements. 15q11.2 microdeletion between BP1 and BP2 has been previously associated with developmental delay and atypical psychological patterns. This region contains four highly-conserved and non-imprinted genes: NIPA1, NIPA2, CYFIP1, TUBGCP5. Our goal was to investigate the phenotypes associated with this microdeletion in a cohort of 52 patients. This copy number variation (CNV) was prevalent in 0.8% patients presenting with developmental delay, psychological pattern issues and/or multiple congenital malformations. This was studied by array-CGH at six different French Genetic laboratories. We collected data from 52 unrelated patients (including 3 foetuses) after excluding patients with an associated genetic alteration (known CNV, aneuploidy or known monogenic disease). Out of 52 patients, mild or moderate developmental delay was observed in 68.3%, 85.4% had speech impairment and 63.4% had psychological issues such as Attention Deficit and Hyperactivity Disorder, Autistic Spectrum Disorder or Obsessive-Compulsive Disorder. Seizures were noted in 18.7% patients and associated congenital heart disease in 17.3%. Parents were analysed for abnormalities in the region in 65.4% families. Amongst these families, 'de novo' microdeletions were observed in 18.8% and 81.2% were inherited from one of the parents. Incomplete penetrance and variable expressivity were observed amongst the patients. Our results support the hypothesis that 15q11.2 (BP1-BP2) microdeletion is associated with developmental delay, abnormal behaviour, generalized epilepsy and congenital heart disease. The later feature has been rarely described. Incomplete penetrance and variability of expression demands further assessment and studies.
Subject(s)
Developmental Disabilities/genetics , Epilepsy/genetics , Heart Diseases/genetics , Intellectual Disability/genetics , Mental Disorders/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Cation Transport Proteins , Child , Child Development Disorders, Pervasive/genetics , Child, Preschool , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 15/genetics , Cohort Studies , Comparative Genomic Hybridization , DNA Copy Number Variations , Developmental Disabilities/diagnosis , Epilepsy/diagnosis , Female , Heart Diseases/congenital , Heart Diseases/diagnosis , Humans , In Situ Hybridization, Fluorescence , Infant , Intellectual Disability/diagnosis , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mental Disorders/diagnosis , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Phenotype , Speech Disorders/genetics , Young AdultABSTRACT
Congenital diaphragmatic hernia (CDH) has an incidence of around 1/3000 births. Chromosomal anomalies constitute an important etiology for non-isolated CDH, and may participate to the identification of candidate genes for diaphragm development. We report on a microduplication identified by array-CGH (comparative genomic hybridization) including five contiguous genes (OPHN1, YIPF6, STARD8, EFNB1 and PJA1) and arising de novo in a male presenting a congenital diaphragmatic hernia (CDH). Our case is the second report of EFNB1 duplication associated with CDH in a male patient, supporting its implication sensitive to gene dosage in diaphragm development.
Subject(s)
Ephrin-B1/genetics , Hernias, Diaphragmatic, Congenital , Sex Chromosome Disorders/genetics , Trisomy/genetics , Chromosome Banding , Chromosomes, Human, X/genetics , Comparative Genomic Hybridization , Gene Dosage , Hernia, Diaphragmatic/genetics , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Phenotype , Sex Chromosome AberrationsABSTRACT
Interstitial 18q deletions encompassing band 18q12.3 define the del(18)(q12.2q21.1) syndrome. Usual manifestations are mild dysmorphic features, mental retardation, behaviour abnormalities and lack of serious malformation. Seizures have also been found. Recently, more specifically, impairment of expressive language has been reported. We report on two patients with de novo 18q interstitial deletions characterized by oligonucleotide array CGH. The smallest, a 5.3Mb deletion (35.7-40.9Mb) within band q12.3, was found in a 4-year-old girl who suffered mainly from expressive dysphasia. A larger 9.5Mb deletion (34.6-43.9Mb) was observed in a 20-year-old man with a more severe clinical picture including seizures and limited speech. Among the four genes located in the 5.3Mb region, RIT2 (Ras-like without CAAX 2) and SYT4 (synaptotagmin IV), both strongly expressed in the brain, are pointed out as likely candidate genes for language development.
Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 18 , Language Development Disorders/genetics , Female , Humans , Male , Nerve Tissue Proteins/genetics , Synaptotagmins , Young AdultABSTRACT
BACKGROUND: The 17p13.3 deletion syndrome (or Miller-Dieker syndrome, MDS, MIM 247200) is characterized by lissencephaly, mental retardation and facial dysmorphism. The phenotype is attributed to haploinsufficiency of two genes present in the minimal critical region of MDS: PAFAH1B1 (formerly referred to as LIS1) and YWHAE. Whereas isolated PAFAH1B1 deletion causes lissencephaly, YWHAE is a candidate for the dysmorphic phenotype associated with MDS. OBJECTIVE: We describe clinical, neuroradiological and molecular data in four patients with a 17p13.3 deletion distal to PAFAH1B1 involving YWHAE. RESULTS: All patients presented with mild or moderate developmental delay and pre and/or post-natal growth retardation. Patients A, B and C had neuro-imaging anomalies: leucoencephalopathy with macrocephaly (patients A and C), Chiari type 1 malformation (patient A) and paraventricular cysts (patient C). Patient B had patent ductus arteriosus and pulmonary arterial hypertension. Patient C had unilateral club foot. Patient D had enlarged Virchow Robin spaces, microcornea, and chorioretinal and lens coloboma. Array-CGH revealed de novo terminal 17p13.3 deletions for patient A and B, and showed interstitial 17p13.3 deletions of 1.4 Mb for patient C and of 0.5 Mb for patient D. In all patients, PAFAH1B1 was not deleted. CONCLUSION: Our patients confirm that 17p deletion distal to PAFAH1B1 have a distinctive phenotype : mild mental retardation, moderate to severe growth restriction, white matter abnormalities and developmental defects including Chiari type 1 malformation and coloboma. Our patients contribute to the delineation and clinical characterization of 17p13.3 deletion distal to PAFAH1B1 and highlight the role of the region containing YWHAE in brain and eye development and in somatic growth.
Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 14-3-3 Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Microtubule-Associated Proteins/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 14-3-3 Proteins/metabolism , Abnormalities, Multiple/genetics , Child , Child, Preschool , Chromosomes, Human, Pair 17/metabolism , Female , Haploinsufficiency , Humans , Male , Microtubule-Associated Proteins/metabolism , Young AdultABSTRACT
We report on a 28-year old woman carrying a 0.8 Mb de novo interstitial deletion in 19q13.32 detected by high-resolution array-CGH. She has severe mental retardation, tetralogy of Fallot, cleft lip and palate, deafness, megacolon and other dysmorphic features. Only a few cases of constitutional deletions located at the long arm of chromosome 19 have been previously described and this is the first report involving 19q13.32. The deleted region encompasses 15 genes, among which 3 candidate genes for genotype-phenotype correlation could be delineated. Since SLC8A2 is broadly expressed in brain and plays a potential role during embryonic development, its haploinsufficiency could possibly be related to mental retardation; as it is also expressed in aortic and intestinal smooth muscles, SLC8A2 could be related to the aortic defect of the complex cardiac malformation and to the megacolon. SAE1, a SUMO-1 activating enzyme subunit, may be related to cleft lip and palate. KPTN coding region may be a candidate gene for hearing loss. Further experimental studies on either in vivo models or diagnostic materials are needed to elucidate the role of these potential candidate genes for the phenotypic abnormalities observed in the investigated patient.