Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Mol Cell ; 83(14): 2559-2577.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37421942

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.


Subject(s)
Protein Serine-Threonine Kinases , SARS-CoV-2 , Virus Internalization , Humans , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Unfolded Protein Response
2.
Nat Rev Genet ; 25(7): 500-512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38374446

ABSTRACT

The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.


Subject(s)
Evolution, Molecular , Wnt Proteins , Wnt Signaling Pathway , Animals , Wnt Signaling Pathway/genetics , Humans , Wnt Proteins/metabolism , Wnt Proteins/genetics , Signal Transduction/genetics
3.
Cell ; 163(6): 1314-25, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26638068

ABSTRACT

Image-based screening is used to measure a variety of phenotypes in cells and whole organisms. Combined with perturbations such as RNA interference, small molecules, and mutations, such screens are a powerful method for gaining systematic insights into biological processes. Screens have been applied to study diverse processes, such as protein-localization changes, cancer cell vulnerabilities, and complex organismal phenotypes. Recently, advances in imaging and image-analysis methodologies have accelerated large-scale perturbation screens. Here, we describe the state of the art for image-based screening experiments and delineate experimental approaches and image-analysis approaches as well as discussing challenges and future directions, including leveraging CRISPR/Cas9-mediated genome engineering.


Subject(s)
Cells/chemistry , Image Processing, Computer-Assisted/methods , CRISPR-Cas Systems , Cells/cytology , High-Throughput Screening Assays , Microscopy , Proteins/analysis , RNA Interference
4.
Development ; 150(3)2023 02 15.
Article in English | MEDLINE | ID: mdl-36763105

ABSTRACT

Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.


Subject(s)
Membrane Proteins , Wnt Proteins , Wnt Proteins/genetics , Wnt Proteins/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Wnt Signaling Pathway/genetics , Carrier Proteins/metabolism
5.
Nature ; 588(7836): 151-156, 2020 12.
Article in English | MEDLINE | ID: mdl-33149305

ABSTRACT

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Subject(s)
Lung/drug effects , Lung/physiology , Lymphotoxin beta Receptor/antagonists & inhibitors , Regeneration/drug effects , Signal Transduction/drug effects , Wnt Proteins/agonists , Adaptive Immunity , Aging/metabolism , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Apoptosis/drug effects , Emphysema/metabolism , Female , Humans , Immunity, Innate , Lung/metabolism , Lymphotoxin beta Receptor/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Stem Cells/drug effects , Stem Cells/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
6.
PLoS Genet ; 19(10): e1011004, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37903161

ABSTRACT

The last decade witnesses the emergence of the abundant family of smORF peptides, encoded by small ORF (<100 codons), whose biological functions remain largely unexplored. Bioinformatic analyses here identify hundreds of putative smORF peptides expressed in Drosophila imaginal leg discs. Thanks to a functional screen in leg, we found smORF peptides involved in morphogenesis, including the pioneer smORF peptides Pri. Since we identified its target Ubr3 in the epidermis and pri was known to control leg development through poorly understood mechanisms, we investigated the role of Ubr3 in mediating pri function in leg. We found that pri plays several roles during leg development both in patterning and in cell survival. During larval stage, pri activates independently of Ubr3 tarsal transcriptional programs and Notch and EGFR signaling pathways, whereas at larval pupal transition, Pri peptides cooperate with Ubr3 to insure cell survival and leg morphogenesis. Our results highlight Ubr3 dependent and independent functions of Pri peptides and their pleiotropy. Moreover, we reveal that the smORF peptide family is a reservoir of overlooked developmental regulators, displaying distinct molecular functions and orchestrating leg development.


Subject(s)
Drosophila Proteins , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Peptides/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
PLoS Genet ; 18(1): e1009992, 2022 01.
Article in English | MEDLINE | ID: mdl-35007276

ABSTRACT

The gut sets the immune and metabolic parameters for the survival of commensal bacteria. We report that in Drosophila, deficiency in bacterial recognition upstream of Toll/NF-κB signalling resulted in reduced density and diversity of gut bacteria. Translational regulation factor 4E-BP, a transcriptional target of Toll/NF-κB, mediated this host-bacteriome interaction. In healthy flies, Toll activated 4E-BP, which enabled fat catabolism, which resulted in sustaining of the bacteriome. The presence of gut bacteria kept Toll signalling activity thus ensuring the feedback loop of their own preservation. When Toll activity was absent, TOR-mediated suppression of 4E-BP made fat resources inaccessible and this correlated with loss of intestinal bacterial density. This could be overcome by genetic or pharmacological inhibition of TOR, which restored bacterial density. Our results give insights into how an animal integrates immune sensing and metabolism to maintain indigenous bacteria in a healthy gut.


Subject(s)
Bacteria/growth & development , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/microbiology , Toll-Like Receptors/metabolism , Transcription Factors/metabolism , Animals , Bacteria/immunology , Carrier Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Feedback, Physiological , Gastrointestinal Microbiome , NF-kappa B/metabolism , Signal Transduction , Symbiosis
9.
Proc Natl Acad Sci U S A ; 119(30): e2122476119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867833

ABSTRACT

During organismal development, homeostasis, and disease, Dishevelled (Dvl) proteins act as key signaling factors in beta-catenin-dependent and beta-catenin-independent Wnt pathways. While their importance for signal transmission has been genetically demonstrated in many organisms, our mechanistic understanding is still limited. Previous studies using overexpressed proteins showed Dvl localization to large, punctate-like cytoplasmic structures that are dependent on its DIX domain. To study Dvl's role in Wnt signaling, we genome engineered an endogenously expressed Dvl2 protein tagged with an mEos3.2 fluorescent protein for superresolution imaging. First, we demonstrate the functionality and specificity of the fusion protein in beta-catenin-dependent and beta-catenin-independent signaling using multiple independent assays. We performed live-cell imaging of Dvl2 to analyze the dynamic formation of the supramolecular cytoplasmic Dvl2_mEos3.2 condensates. While overexpression of Dvl2_mEos3.2 mimics the previously reported formation of abundant large "puncta," supramolecular condensate formation at physiological protein levels is only observed in a subset of cells with approximately one per cell. We show that, in these condensates, Dvl2 colocalizes with Wnt pathway components at gamma-tubulin and CEP164-positive centrosomal structures and that the localization of Dvl2 to these condensates is Wnt dependent. Single-molecule localization microscopy using photoactivated localization microscopy (PALM) of mEos3.2 in combination with DNA-PAINT demonstrates the organization and repetitive patterns of these condensates in a cell cycle-dependent manner. Our results indicate that the localization of Dvl2 in supramolecular condensates is coordinated dynamically and dependent on cell state and Wnt signaling levels. Our study highlights the formation of endogenous and physiologically regulated biomolecular condensates in the Wnt pathways at single-molecule resolution.


Subject(s)
Biomolecular Condensates , Dishevelled Proteins , Wnt Proteins , Wnt Signaling Pathway , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Humans , Microscopy, Fluorescence/methods , Protein Domains , Wnt Proteins/metabolism , beta Catenin/metabolism
10.
Chromosoma ; 132(1): 31-53, 2023 03.
Article in English | MEDLINE | ID: mdl-36746786

ABSTRACT

A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Proliferation , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Temperature
11.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34406391

ABSTRACT

WNT signalling is important for development in all metazoans and is associated with various human diseases. The ubiquitin-proteasome system (UPS) and regulatory endoplasmic reticulum-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI (also known as WLS) is ubiquitylated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitylation machinery. Interestingly, we also found that EVI/WLS is ubiquitylated and degraded in cells irrespective of their level of WNT production. This K11, K48 and K63-linked ubiquitylation is mediated by the E2 ubiquitin-conjugating enzymes UBE2J2, UBE2K and UBE2N, but is independent of the E3 ubiquitin ligases HRD1 (also known as SYVN1) and GP78 (also known as AMFR). Taken together, our study identifies factors that link the UPS to the WNT secretory pathway and provides mechanistic details of the fate of an endogenous substrate of regulatory ERAD in mammalian cells. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum , Animals , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
Mol Syst Biol ; 18(8): e10874, 2022 08.
Article in English | MEDLINE | ID: mdl-35904277

ABSTRACT

Wnt pathways are important for the modulation of tissue homeostasis, and their deregulation is linked to cancer development. Canonical Wnt signaling is hyperactivated in many human colorectal cancers due to genetic alterations of the negative Wnt regulator APC. However, the expression levels of Wnt-dependent targets vary between tumors, and the mechanisms of carcinogenesis concomitant with this Wnt signaling dosage have not been understood. In this study, we integrate whole-genome CRISPR/Cas9 screens with large-scale multi-omic data to delineate functional subtypes of cancer. We engineer APC loss-of-function mutations and thereby hyperactivate Wnt signaling in cells with low endogenous Wnt activity and find that the resulting engineered cells have an unfavorable metabolic equilibrium compared with cells which naturally acquired Wnt hyperactivation. We show that the dosage level of oncogenic Wnt hyperactivation impacts the metabolic equilibrium and the mitochondrial phenotype of a given cell type in a context-dependent manner. These findings illustrate the impact of context-dependent genetic interactions on cellular phenotypes of a central cancer driver mutation and expand our understanding of quantitative modulation of oncogenic signaling in tumorigenesis.


Subject(s)
Colorectal Neoplasms , Wnt Signaling Pathway , Carcinogenesis/genetics , Colorectal Neoplasms/metabolism , Homeostasis , Humans , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
13.
Proc Natl Acad Sci U S A ; 117(17): 9401-9412, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32277031

ABSTRACT

In all animals, the intestinal epithelium forms a tight barrier to the environment. The epithelium regulates the absorption of nutrients, mounts immune responses, and prevents systemic infections. Here, we investigate the consequences of tumorigenesis on the microbiome using a Drosophila intestinal tumor model. We show that upon loss of BMP signaling, tumors lead to aberrant activation of JNK/Mmp2 signaling, followed by intestinal barrier dysfunction and commensal imbalance. In turn, the dysbiotic microbiome triggers a regenerative response and stimulates tumor growth. We find that inhibiting JNK signaling or depletion of the microbiome restores barrier function of the intestinal epithelium, leading to a reestablishment of host-microbe homeostasis, and organismic lifespan extension. Our experiments identify a JNK-dependent feedback amplification loop between intestinal tumors and the microbiome. They also highlight the importance of controlling the activity level of JNK signaling to maintain epithelial barrier function and host-microbe homeostasis.


Subject(s)
Cell Transformation, Neoplastic , Drosophila melanogaster/microbiology , Homeostasis , Intestinal Mucosa/immunology , MAP Kinase Kinase 4/metabolism , Animals , Gastrointestinal Microbiome , Host-Pathogen Interactions , MAP Kinase Kinase 4/genetics , Signal Transduction
14.
Proc Natl Acad Sci U S A ; 117(37): 22890-22899, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32843348

ABSTRACT

CRISPR-Cas genome engineering has revolutionized biomedical research by enabling targeted genome modification with unprecedented ease. In the popular model organism Drosophila melanogaster, gene editing has so far relied exclusively on the prototypical CRISPR nuclease Cas9. Additional CRISPR systems could expand the genomic target space, offer additional modes of regulation, and enable the independent manipulation of genes in different cells of the same animal. Here we describe a platform for efficient Cas12a gene editing in Drosophila We show that Cas12a from Lachnospiraceae bacterium, but not Acidaminococcus spec., can mediate robust gene editing in vivo. In combination with most CRISPR RNAs (crRNAs), LbCas12a activity is high at 29 °C, but low at 18 °C, enabling modulation of gene editing by temperature. LbCas12a can directly utilize compact crRNA arrays that are substantially easier to construct than Cas9 single-guide RNA arrays, facilitating multiplex genome engineering. Furthermore, we show that conditional expression of LbCas12a is sufficient to mediate tightly controlled gene editing in a variety of tissues, allowing detailed analysis of gene function in a multicellular organism. We also test a variant of LbCas12a with a D156R point mutation and show that it has substantially higher activity and outperforms a state-of-the-art Cas9 system in identifying essential genes. Cas12a gene editing expands the genome-engineering toolbox in Drosophila and will be a powerful method for the functional annotation of the genome. This work also presents a fully genetically encoded Cas12a system in an animal, laying out principles for the development of similar systems in other genetically tractable organisms for multiplexed conditional genome engineering.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Gene Editing/methods , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Drosophila melanogaster/genetics , Endonucleases/metabolism , RNA/genetics , RNA/metabolism , RNA, Guide, Kinetoplastida/metabolism
15.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982422

ABSTRACT

Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.


Subject(s)
Neoplasms , Wnt Proteins , Humans , Ligands , Wnt Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Wnt Signaling Pathway/genetics , Biological Transport , Tumor Microenvironment
16.
Int J Cancer ; 151(9): 1586-1601, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35666536

ABSTRACT

Epigenetic dysregulation is an important feature of colorectal cancer (CRC). Combining epigenetic drugs with other antineoplastic agents is a promising treatment strategy for advanced cancers. Here, we exploited the concept of synthetic lethality to identify epigenetic targets that act synergistically with histone deacetylase (HDAC) inhibitors to reduce the growth of CRC. We applied a pooled CRISPR-Cas9 screen using a custom sgRNA library directed against 614 epigenetic regulators and discovered that knockout of the euchromatic histone-lysine N-methyltransferases 1 and 2 (EHMT1/2) strongly enhanced the antiproliferative effect of clinically used HDAC inhibitors. Using tissue microarrays from 1066 CRC samples with different tumor stages, we showed that low EHMT2 protein expression is predominantly found in advanced CRC and associated with poor clinical outcome. Cotargeting of HDAC and EHMT1/2 with specific small molecule inhibitors synergistically reduced proliferation of CRC cell lines. Mechanistically, we used a high-throughput Western blot assay to demonstrate that both inhibitors elicited distinct cellular mechanisms to reduce tumor growth, including cell cycle arrest and modulation of autophagy. On the epigenetic level, the compounds increased H3K9 acetylation and reduced H3K9 dimethylation. Finally, we used a panel of patient-derived CRC organoids to show that HDAC and EHMT1/2 inhibition synergistically reduced tumor viability in advanced models of CRC.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Acetylation , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans
17.
EMBO J ; 37(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29378775

ABSTRACT

Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of ß-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.


Subject(s)
Adenocarcinoma/metabolism , Colon/metabolism , Colonic Neoplasms/metabolism , Endoplasmic Reticulum-Associated Degradation , Gene Expression Regulation , Wnt Proteins/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Adenocarcinoma/genetics , Cells, Cultured , Colonic Neoplasms/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Wnt Proteins/genetics
18.
Development ; 146(15)2019 08 09.
Article in English | MEDLINE | ID: mdl-31399474

ABSTRACT

Wnts are secreted proteins that regulate cell fate during development of all metazoans. Wnt proteins were proposed to spread over several cells to activate signaling directly at a distance. In the Drosophila wing epithelium, an extracellular gradient of the Wnt1 homolog Wingless (Wg) was observed extending over several cells away from producing cells. Surprisingly, however, it was also shown that a membrane-tethered Neurotactin-Wg fusion protein (NRT-Wg) can largely replace endogenous Wg, leading to proper patterning of the wing. Therefore, the functional range of Wg and whether Wg spreading is required for correct tissue patterning remains controversial. Here, by capturing secreted Wg on cells away from the source, we show that Wg acts over a distance of up to 11 cell diameters to induce signaling. Furthermore, cells located outside the reach of extracellular Wg depend on the Frizzled2 receptor to maintain signaling. Frizzled2 expression is increased in the absence of Wg secretion and is required to maintain signaling and cell survival in NRT-wg wing discs. Together, these results provide insight into the mechanisms by which robust Wnt signaling is achieved in proliferating tissues.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Frizzled Receptors/metabolism , Wings, Animal/embryology , Wnt Signaling Pathway/physiology , Wnt1 Protein/metabolism , Animals , Membrane Glycoproteins/metabolism
19.
Nat Methods ; 16(8): 750-756, 2019 08.
Article in English | MEDLINE | ID: mdl-31363221

ABSTRACT

The Drosophila wing disc has been a fundamental model system for the discovery of key signaling pathways and for our understanding of developmental processes. However, a complete map of gene expression in this tissue is lacking. To obtain a gene expression atlas in the wing disc, we employed single cell RNA sequencing (scRNA-seq) and developed a method for analyzing scRNA-seq data based on gene expression correlations rather than cell mapping. This enables us to compute expression maps for all detected genes in the wing disc and to discover 824 genes with spatially restricted expression patterns. This approach identifies clusters of genes with similar expression patterns and functional relevance. As proof of concept, we characterize the previously unstudied gene CG5151 and show that it regulates Wnt signaling. Our method will enable the leveraging of scRNA-seq data for generating expression atlases of undifferentiated tissues during development.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods , Wings, Animal/metabolism , Algorithms , Animals , Drosophila/embryology , Embryo, Nonmammalian/cytology , Female , Gene Expression Profiling , Sequence Analysis, RNA , Wings, Animal/embryology
20.
PLoS Pathog ; 16(4): e1008458, 2020 04.
Article in English | MEDLINE | ID: mdl-32339205

ABSTRACT

The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish. We showed that this Hyd-dependent interaction was required for the transcription of immunity-related genes that are activated by both Relish and Akirin but was dispensable for the transcription of genes that depend solely on Relish. Therefore Hyd is key in NF-κB transcriptional selectivity downstream of the IMD pathway. Drosophila depleted of Akirin or Hyd failed to express the full set of genes encoding immune-induced anti-microbial peptides and succumbed to immune challenges. We showed further that UBR5, the mammalian homolog of Hyd, was also required downstream of the NF-κB pathway for the activation of Interleukin 6 (IL6) transcription by LPS or IL-1ß in cultured human cells. Our findings link the action of an E3 ubiquitin ligase to the activation of immune effector genes, deepening our understanding of the involvement of ubiquitination in inflammation and identifying a potential target for the control of inflammatory diseases.


Subject(s)
Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Nuclear Proteins/immunology , Transcription Factors/immunology , Ubiquitin-Protein Ligases/immunology , Animals , Drosophila , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/microbiology , Gram-Negative Bacteria/physiology , HeLa Cells , Humans , Immunity, Innate , Nuclear Proteins/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL