Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Opt Express ; 30(22): 40531-40539, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298984

ABSTRACT

An interesting property of high harmonic generation in solids is its laser polarization dependent nature which in turn provides information about the crystal and band structure of the generation medium. Here we report on the linear polarization dependence of high-order harmonic generation from a gallium arsenide crystal. Interestingly, we observe a significant evolution of the anisotropic response of above bandgap harmonics as a function of the laser intensity. We attribute this change to fundamental microscopic effects of the emission process comprising a competition between intraband and interband dynamics. This intensity dependence of the anisotropic nature of the generation process offers the possibility to drive and control the electron current along preferred directions of the crystal, and could serve as a switching technique in an integrated all-solid-state petahertz optoelectronic device.

2.
Opt Lett ; 47(19): 4865-4868, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181136

ABSTRACT

We demonstrate a method to image an object using a self-probing approach based on semiconductor high-harmonic generation. On the one hand, ptychography enables high-resolution imaging from the coherent light diffracted by an object. On the other hand, high-harmonic generation from crystals is emerging as a new source of extreme-ultraviolet ultrafast coherent light. We combine these two techniques by performing ptychography measurements with nanopatterned crystals serving as the object as well as the generation medium of the harmonics. We demonstrate that this strong field in situ approach can provide structural information about an object. With the future developments of crystal high harmonics as a compact short-wavelength light source, our demonstration can be an innovative approach for nanoscale imaging of photonic and electronic devices in research and industry.

3.
Opt Lett ; 46(7): 1764-1767, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793538

ABSTRACT

Spatial coherence is an impactful source parameter in many applications ranging from atomic and molecular physics to metrology or imaging. In lensless imaging, for example, it can strongly affect the image formation, especially when the source exhibits shot-to-shot variations. Single-shot characterization of the spatial coherence length of a source is thus crucial. However, current techniques require either parallel intensity measurements or the use of several masks. Based on the method proposed by González et al. [J. Opt. Soc. Am. A28, 1107 (2011)JOAOD60740-323210.1364/JOSAA.28.001107], we designed a specific arrangement of a two-dimensional non-redundant array of apertures, which allows, through its far field interference pattern, for a single-shot measurement of the spatial coherence, while being robust against beam-pointing instabilities. The strategic configuration of the pinholes allows us to disentangle the degree of spatial coherence from the intensity distribution, thus removing the need for parallel measurement of the beam intensity. An experimental validation is performed using a high-harmonic source. A statistical study in different regimes shows the robustness of the method.

4.
Opt Lett ; 44(3): 546-549, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30702675

ABSTRACT

Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. We examine OAM from the recently observed high-harmonic generation (HHG) in semiconductor crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources. First, we verify the transfer and conservation of the OAM in the strong-field regime of interaction from the generation laser to the harmonics. Secondly, we create OAM beams by etching a spiral zone structure directly at the surface of a zinc oxide crystal. Such diffractive optics act on the generated harmonics and produces focused optical vortices with sub-micrometric size.

6.
Biomed Opt Express ; 11(5): 2806-2817, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32499962

ABSTRACT

Today, 3D imaging techniques are emerging, not only as a new tool in early drug discovery but also for the development of potential therapeutics to treat disease. Particular efforts are directed towards in vivo physiology to avoid perturbing the system under study. Here, we assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis. We test our concept on various bio-applications and present here the first results. The microscopy platform based on in-holography provides large fields of view images (several mm2 compared to several hundred µm2) with sub-micrometer spatial resolution. 3D image reconstructions are achieved using back propagation functions post-processing.

7.
Sci Rep ; 9(1): 5663, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30952870

ABSTRACT

The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source. The strong field regime is reached by confining the electric field from a few nanojoules femtosecond laser in a single 3D semiconductor waveguide. We reveal a strong competition between enhancement of coherent harmonics and incoherent fluorescence favored by excitonic processes. However, far from the band edge, clear enhancement of the harmonic emission is reported with a robust sustainability offering a compact nanosource for applications. We illustrate the potential of our harmonic nano-device by performing a coherent diffractive imaging experiment. Ultra-compact UV/X-ray nanoprobes are foreseen to have other applications such as petahertz electronics, nano-tomography or nano-medicine.

8.
Nat Commun ; 3: 999, 2012.
Article in English | MEDLINE | ID: mdl-22893123

ABSTRACT

Femtosecond magnetization phenomena have been challenging our understanding for over a decade. Most experiments have relied on infrared femtosecond lasers, limiting the spatial resolution to a few micrometres. With the advent of femtosecond X-ray sources, nanometric resolution can now be reached, which matches key length scales in femtomagnetism such as the travelling length of excited 'hot' electrons on a femtosecond timescale. Here we study laser-induced ultrafast demagnetization in [Co/Pd](30) multilayer films, which, for the first time, achieves a spatial resolution better than 100 nm by using femtosecond soft X-ray pulses. This allows us to follow the femtosecond demagnetization process in a magnetic system consisting of alternating nanometric domains of opposite magnetization. No modification of the magnetic structure is observed, but, in comparison with uniformly magnetized systems of similar composition, we find a significantly faster demagnetization time. We argue that this may be caused by direct transfer of spin angular momentum between neighbouring domains.

9.
Opt Lett ; 34(12): 1819-21, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19529714

ABSTRACT

An experimental method is presented to experimentally measure and control the carrier-envelope-phase (CEP)-dependent pulse-energy contrast of isolated attosecond pulses. By scanning the CEP and measuring the photoelectron spectrum produced by the combined action of the attosecond pulses and the high-harmonic driving laser pulses at zero relative time delay, one can extract the pulse-energy ratio between the main attosecond pulse and its neighboring satellite pulses arriving in preceding or subsequent half-cycles of the driver pulse. Moreover, this method allows fast and efficient in situ retrieval of the optimal CEP for high-contrast isolated attosecond pulse generation.

10.
Opt Lett ; 32(21): 3134-6, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17975621

ABSTRACT

Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at omega and the other a strong field detuned from 2omega. The slight detuning deltaomega of the second harmonic is used to break the symmetry of the electric field over many optical cycles and provides a coherent control for the formation of an isolated attosecond pulse.

SELECTION OF CITATIONS
SEARCH DETAIL