Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
EMBO J ; 42(11): e112590, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36912146

ABSTRACT

During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.


Subject(s)
Lymphatic Vessels , Zebrafish , Animals , Zebrafish/genetics , Homeodomain Proteins/genetics , Tumor Suppressor Proteins/genetics , Endothelial Cells , Cells, Cultured , Cell Differentiation , Lymphangiogenesis/genetics , Transcription Factors/genetics , Single-Cell Analysis
2.
Development ; 147(18)2020 09 18.
Article in English | MEDLINE | ID: mdl-32839180

ABSTRACT

The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.


Subject(s)
Cell Movement/physiology , Collagen Type II/metabolism , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Zebrafish/metabolism , Animals , Cell Communication/physiology , Cell Proliferation/physiology , Lymphangiogenesis/physiology , Morphogenesis/physiology , Veins/metabolism
3.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26253536

ABSTRACT

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Subject(s)
Gene Expression Regulation, Developmental , Lymphangiogenesis/genetics , Lymphatic Vessels/embryology , MafB Transcription Factor/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction , Vascular Endothelial Growth Factor C/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Movement/genetics , Embryo, Nonmammalian , MafB Transcription Factor/genetics , Mutation , Nerve Tissue Proteins/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics
4.
Dev Dyn ; 251(2): 336-349, 2022 02.
Article in English | MEDLINE | ID: mdl-34174014

ABSTRACT

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Subject(s)
Lymphatic Vessels , Polycystic Kidney Diseases , Animals , Lymphatic Vessels/metabolism , Mice , Mice, Knockout , Morphogenesis/genetics , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Protein Kinase C , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
5.
Development ; 145(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29752386

ABSTRACT

Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.


Subject(s)
Atrial Natriuretic Factor/genetics , Heart/embryology , Natriuretic Peptide, Brain/genetics , Receptors, Atrial Natriuretic Factor/genetics , Zebrafish/embryology , Animals , Animals, Genetically Modified , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Gene Editing , Heart Defects, Congenital/genetics , Hyaluronan Synthases/metabolism , T-Box Domain Proteins/metabolism , Versicans/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Dev Dyn ; 249(10): 1201-1216, 2020 10.
Article in English | MEDLINE | ID: mdl-32525258

ABSTRACT

BACKGROUND: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS: We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.


Subject(s)
Lymphangiogenesis/physiology , Lymphatic Vessels/metabolism , MafB Transcription Factor/physiology , Animals , CRISPR-Cas Systems , Crosses, Genetic , Genome , Genotype , In Situ Hybridization , Mice , Mice, Knockout , Mutation , RNA, Messenger/metabolism , Signal Transduction , Time Factors
7.
Development ; 144(3): 507-518, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28087639

ABSTRACT

Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular development in vertebrates. Here, we generated a zebrafish vegfd mutant by genome editing. vegfd mutants display significant defects in facial lymphangiogenesis independent of vegfc function. Strikingly, we find that vegfc and vegfd cooperatively control lymphangiogenesis throughout the embryo, including during the formation of the trunk lymphatic vasculature. Interestingly, we find that vegfd and vegfc also redundantly drive artery hyperbranching phenotypes observed upon depletion of Flt1 or Dll4. Epistasis and biochemical binding assays suggest that, during primary angiogenesis, Vegfd influences these phenotypes through Kdr (Vegfr2) rather than Flt4 (Vegfr3). These data demonstrate that, rather than being dispensable during development, Vegfd plays context-specific indispensable and also compensatory roles during both blood vessel angiogenesis and lymphangiogenesis.


Subject(s)
Lymphangiogenesis/physiology , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor D/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Zebrafish/physiology , Animals , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Lymphangiogenesis/genetics , Membrane Proteins/genetics , Membrane Proteins/physiology , Models, Biological , Mutagenesis , Neovascularization, Physiologic/genetics , Sequence Deletion , Signal Transduction , Up-Regulation , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/physiology , Vascular Endothelial Growth Factor D/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/physiology , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics
8.
Circ Res ; 128(1): 59-61, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33411628
9.
Dev Biol ; 411(1): 115-27, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26769101

ABSTRACT

The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.


Subject(s)
Endothelial Cells/physiology , Intestines/blood supply , Neovascularization, Physiologic/genetics , Vascular Endothelial Growth Factor A/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Movement , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Intestines/embryology , Morpholinos/genetics , Neovascularization, Physiologic/physiology , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
10.
Development ; 141(6): 1239-49, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24523457

ABSTRACT

The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.


Subject(s)
Lymphangiogenesis/physiology , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , DNA/genetics , Gene Expression Regulation, Developmental , Humans , Lymphangiogenesis/genetics , MAP Kinase Signaling System , Mice , Molecular Sequence Data , Point Mutation , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Signal Transduction , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
11.
Hum Mol Genet ; 23(5): 1286-97, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24163130

ABSTRACT

Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , GTPase-Activating Proteins/genetics , Gene Expression Regulation , Hypotrichosis/genetics , Lymphangiogenesis/genetics , Lymphedema/genetics , Telangiectasis/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Movement/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Female , GTPase-Activating Proteins/metabolism , Lymphatic Vessels/metabolism , Mice , Mice, Knockout , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Syndrome , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Zebrafish
12.
FASEB J ; 29(5): 1999-2009, 2015 May.
Article in English | MEDLINE | ID: mdl-25667221

ABSTRACT

CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability.


Subject(s)
Cell Cycle Proteins/metabolism , Centrosome/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-akt/chemistry , Zebrafish Proteins/metabolism , Zebrafish/growth & development , Zebrafish/genetics , Amino Acid Sequence , Animals , Blotting, Western , Cell Cycle , Cell Cycle Proteins/genetics , Cytokinesis/physiology , Fluorescent Antibody Technique , Heterozygote , Homozygote , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Zebrafish Proteins/genetics
13.
Am J Med Genet A ; 170(10): 2694-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27345729

ABSTRACT

Hennekam lymphangiectasia-lymphedema syndrome is an autosomal recessive disorder, with 25% of patients having mutations in CCBE1. We identified a family with two brothers presenting with primary lymphedema, and performed exome sequencing to determine the cause of their disease. Analysis of four family members showed that both affected brothers had the same rare compound heterozygous mutations in CCBE1. The presumed paternally inherited NM_133459.3:c.310G>A; p.(Asp104Asn), lies adjacent to other known pathogenic CCBE1 mutations, while the maternally inherited NM_133459.3:c.80T>C; p.(Leu27Pro) lies in the CCBE1 signal peptide, which has not previously been associated with disease. Functional analysis in a zebrafish model of lymphatic disease showed that both mutations lead to CCBE1 loss of function, confirming the pathogenicity of these variants and expanding the genotypic spectrum of lymphatic disorders. © 2016 Wiley Periodicals, Inc.


Subject(s)
Calcium-Binding Proteins/genetics , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Genotype , Lymphangiectasis, Intestinal/diagnosis , Lymphangiectasis, Intestinal/genetics , Lymphedema/diagnosis , Lymphedema/genetics , Mutation , Tumor Suppressor Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Cell Line , Gene Expression , Gene Frequency , Humans , Infant, Newborn , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Zebrafish
14.
J Biol Chem ; 287(52): 43936-49, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23076145

ABSTRACT

Stac3 was identified as a nutritionally regulated gene from an Atlantic salmon subtractive hybridization library with highest expression in skeletal muscle. Salmon Stac3 mRNA was highly correlated with myogenin and myoD1a expression during differentiation of a salmon primary myogenic culture and was regulated by amino acid availability. In zebrafish embryos, stac3 was initially expressed in myotomal adaxial cells and in fast muscle fibers post-segmentation. Morpholino knockdown resulted in defects in myofibrillar protein assembly, particularly in slow muscle fibers, and decreased levels of the hedgehog receptor patched. The function of Stac3 was further characterized in vitro using the mammalian C2C12 myogenic cell line. Stac3 mRNA expression increased during the differentiation of the C2C12 myogenic cell line. Knockdown of Stac3 by RNAi inhibited myotube formation, and microarray analysis revealed that transcripts involved in cell cycle, focal adhesion, cytoskeleton, and the pro-myogenic factors Igfbp-5 and Igf2 were down-regulated. RNAi-treated cells had suppressed Akt signaling and exogenous insulin-like growth factor (Igf) 2 was unable to rescue the phenotype, however, Igf/Akt signaling was not blocked. Overexpression of Stac3, which results in increased levels of Igfbp-5 mRNA, did not lead to increased differentiation. In synchronized cells, Stac3 mRNA was most abundant during the G(1) phase of the cell cycle. RNAi-treated cells were smaller, had higher proliferation rates and a decreased proportion of cells in G(1) phase when compared with controls, suggesting a role in the G(1) phase checkpoint. These results identify Stac3 as a new gene required for myogenic differentiation and myofibrillar protein assembly in vertebrates.


Subject(s)
Cell Differentiation/physiology , Fish Proteins/biosynthesis , Gene Expression Regulation/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/biosynthesis , Salmo salar/metabolism , Animals , Cell Line , Fish Proteins/genetics , G1 Phase Cell Cycle Checkpoints/physiology , Gene Expression Profiling , Muscle Fibers, Skeletal/cytology , Muscle Proteins/genetics , Salmo salar/genetics , Signal Transduction/physiology , Zebrafish
15.
J Biol Chem ; 287(35): 29312-23, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22773843

ABSTRACT

Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a ß-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.


Subject(s)
Cell Polarity/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , Zebrafish Proteins/metabolism , Animals , CHO Cells , Cochlea/cytology , Cochlea/embryology , Cricetinae , Cricetulus , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , HEK293 Cells , Heterozygote , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Mutant Strains , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Wnt Proteins/genetics , Zebrafish , Zebrafish Proteins/genetics , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
16.
Br J Nutr ; 108(12): 2148-57, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-22464448

ABSTRACT

We investigated postprandial changes in transcript abundance following a single satiating meal in juvenile Atlantic salmon (Salmo salar L.) (about 70 g body mass) following fasting for 1 week at 12°C. The expression of twenty-three growth-related genes was determined in fast myotomal muscle using quantitative real-time PCR at the following postprandial time points: - 12, 0, 1, 3, 6, 12, 24, 48 and 96 h. The gut was fullest 1-6 h after feeding and emptied within 48-96 h. IGF-I, MyoD1c, MRF4 and myf5 transcripts were sharply up-regulated within 1 h of refeeding and are promising candidate genes involved in a fast-response signalling system that regulates fish myotomal muscle growth. These genes clustered together with MyoD1b and suggest a coordinated regulation to favour resumption of myogenesis as an early response to feeding. Insulin-like growth factor (IGF)-II and the ubiquitin ligase MAFbx/atrogin-1 were initially down-regulated but restored to initial values after 12 h. It is also suggested that local production of IGF-I within the muscle might suppress catabolic pathways depressing MAFbx/atrogin-1.


Subject(s)
Fasting/physiology , Food , Gene Expression/physiology , Muscle Development/genetics , Salmo salar/growth & development , Salmo salar/genetics , Animals , Fish Proteins/genetics , Insulin-Like Growth Factor II/genetics , Muscle Proteins/genetics , Postprandial Period , RNA, Messenger/analysis , Real-Time Polymerase Chain Reaction/veterinary , Salmo salar/metabolism , Satiation , Somatomedins/genetics , Ubiquitin-Protein Ligases/genetics
17.
Nucleic Acids Res ; 38(21): e194, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20846956

ABSTRACT

Amplification of the 5' ends of cDNA, although simple in theory, can often be difficult to achieve. We describe a novel method for the specific amplification of cDNA ends. An oligo-dT adapter incorporating a dUTP-containing PCR primer primes first-strand cDNA synthesis incorporating dUTP. Using the Cap finder approach, another distinct dUTP containing adapter is added to the 3' end of the newly synthesized cDNA. Second-strand synthesis incorporating dUTP is achieved by PCR, using dUTP-containing primers complimentary to the adapter sequences incorporated in the cDNA ends. The double-stranded cDNA-containing dUTP serves as a universal template for the specific amplification of the 3' or 5' end of any gene. To amplify the ends of cDNA, asymmetric PCR is performed using a single gene-specific primer and standard dNTPs. The asymmetric PCR product is purified and non-target transcripts containing dUTP degraded by Uracil DNA glycosylase, leaving only those transcripts produced during the asymmetric PCR. Subsequent PCR using a nested gene-specific primer and the 3' or 5' T-RACE primer results in specific amplification of cDNA ends. This method can be used to specifically amplify the 3' and 5' ends of numerous cDNAs from a single cDNA synthesis reaction.


Subject(s)
DNA, Complementary/biosynthesis , Polymerase Chain Reaction/methods , Animals , Base Sequence , DNA, Complementary/chemistry , Deoxyuracil Nucleotides/metabolism , Salmo salar/genetics , Templates, Genetic , Uracil-DNA Glycosidase , Zebrafish/genetics
18.
J Exp Biol ; 214(Pt 10): 1617-28, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21525308

ABSTRACT

Teleost muscle first arises in early embryonic life and its development is driven by molecules present in the egg yolk and modulated by environmental stimuli including temperature and oxygen. Several populations of myogenic precursor cells reside in the embryonic somite and external cell layer and contribute to muscle fibres in embryo, larval, juvenile and adult stages. Many signalling proteins and transcription factors essential for these events are known. In all cases, myogenesis involves myoblast proliferation, migration, fusion and terminal differentiation. Maturation of the embryonic muscle is associated with motor innervation and the development of a scaffold of connective tissue and complex myotomal architecture needed to generate swimming behaviour. Adult muscle is a heterogeneous tissue composed of several cell types that interact to affect growth patterns. The development of capillary and lymphatic circulations and extramuscular organs--notably the gastrointestinal, endocrine, neuroendocrine and immune systems--serves to increase information exchange between tissues and with the external environment, adding to the complexity of growth regulation. Teleosts often exhibit an indeterminate growth pattern, with body size and muscle mass increasing until mortality or senescence occurs. The dramatic increase in myotomal muscle mass between embryo and adult requires the continuous production of muscle fibres until 40-50% of the maximum body length is reached. Sarcomeric proteins can be mobilised as a source of amino acids for energy metabolism by other tissues and for gonad generation, requiring the dynamic regulation of muscle mass throughout the life cycle. The metabolic and contractile phenotypes of muscle fibres also show significant plasticity with respect to environmental conditions, migration and spawning. Many genes regulating muscle growth are found as multiple copies as a result of paralogue retention following whole-genome duplication events in teleost lineages. The extent to which indeterminate growth, ectothermy and paralogue preservation have resulted in modifications of the genetic pathways regulating muscle growth in teleosts compared to mammals largely remains unknown. This review describes the use of compensatory growth models, transgenesis and tissue culture to explore the mechanisms of muscle growth in teleosts and provides some perspectives on future research directions.


Subject(s)
Fishes/physiology , Gene Duplication/genetics , Models, Biological , Muscle Development/physiology , Muscle, Skeletal/embryology , Muscle, Skeletal/growth & development , Signal Transduction/physiology , Animals , Fishes/genetics , Muscle, Skeletal/anatomy & histology , Signal Transduction/genetics , Species Specificity
19.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206901

ABSTRACT

Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.

20.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Article in English | MEDLINE | ID: mdl-34750583

ABSTRACT

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Subject(s)
Cell Proliferation , DEAD-box RNA Helicases/metabolism , Endothelial Cells/enzymology , Lymphangiogenesis , Lymphatic Vessels/enzymology , RNA, Ribosomal/biosynthesis , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor C/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Cycle Checkpoints , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Developmental , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Lymphatic Vessels/embryology , RNA, Ribosomal/genetics , Ribosomes/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL