Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39061863

ABSTRACT

Plant extracts are considered as a large source of active biomolecules, especially in phytosanitary and pharmacological fields. Anthyllis henoniana is a woody Saharan plant located in the big desert of North Africa. Our previous research paper proved the richness of the methanol extract obtained from the stems in flavonoids and phenolic compounds as well as its remarkable antioxidant activity. In this research, we started by investigating the phytochemical composition of the methanol extract using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). Among the 41 compounds identified, we isolated and characterized (structurally and functionally) the most abundant product, a flavonoid triglycoside (AA770) not previously described in this species. This compound, which presents no cytotoxic activity, exhibits an interesting cellular antioxidant effect by reducing reactive oxygen species (ROS) generation, and an antiproliferative action on breast cancer cells. This study provides a preliminary investigation into the pharmacological potential of the natural compound AA770, isolated and identified from Anthyllis henoniana for the first time.

2.
Toxins (Basel) ; 15(10)2023 10 05.
Article in English | MEDLINE | ID: mdl-37888631

ABSTRACT

Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.


Subject(s)
Ant Venoms , Ants , Animals , Ant Venoms/pharmacology , Ant Venoms/chemistry , Peptides/pharmacology , Peptides/chemistry , Ants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL