Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Biol Chem ; 294(11): 4012-4026, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30635397

ABSTRACT

The neutral amino acid transporter solute carrier family 1 member 5 (SLC1A5 or ASCT2) is overexpressed in many cancers. To identify its roles in tumors, we employed 143B osteosarcoma cells and HCC1806 triple-negative breast cancer cells with or without ASCT2 deletion. ASCT2ko 143B cells grew well in standard culture media, but ASCT2 was required for optimal growth at <0.5 mm glutamine, with tumor spheroid growth and monolayer migration of 143B ASCT2ko cells being strongly impaired at lower glutamine concentrations. However, the ASCT2 deletion did not affect matrix-dependent invasion. ASCT2ko 143B xenografts in nude mice exhibited a slower onset of growth and a higher number of small tumors than ASCT2wt 143B xenografts, but did not differ in average tumor size 25 days after xenotransplantation. ASCT2 deficiency was compensated by increased levels of sodium neutral amino acid transporter 1 (SNAT1 or SLC38A1) and SNAT2 (SLC38A2) in ASCT2ko 143B cells, mediated by a GCN2 EIF2α kinase (GCN2)-dependent pathway, but this compensation was not observed in ASCT2ko HCC1806 cells. Combined SNAT1 silencing and GCN2 inhibition significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. Similarly, pharmacological inhibition of l-type amino acid transporter 1 (LAT1) and GCN2 significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. We conclude that cancer cells with reduced transporter plasticity are more vulnerable to disruption of amino acid homeostasis than cells with a full capacity to up-regulate redundant transporters by an integrated stress response.


Subject(s)
Amino Acid Transport System ASC/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Minor Histocompatibility Antigens/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Amino Acid Transport System ASC/deficiency , Amino Acid Transport System ASC/metabolism , Animals , Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Female , Humans , Mice , Mice, Knockout , Minor Histocompatibility Antigens/metabolism , Mutation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Osteosarcoma/metabolism , Tumor Cells, Cultured
2.
Biochem J ; 474(12): 1935-1963, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28546457

ABSTRACT

Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.


Subject(s)
Amino Acids/metabolism , Diet , Homeostasis , Models, Biological , Multiprotein Complexes/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Activating Transcription Factor 4/metabolism , Animals , Appetite Regulation , Autophagy , Biological Transport , Central Nervous System/metabolism , Diet/adverse effects , Fasting/metabolism , Gene Expression Regulation , Humans , Malnutrition/etiology , Malnutrition/metabolism , Mechanistic Target of Rapamycin Complex 1 , Neurons/metabolism , Oxidation-Reduction , Postprandial Period , Protein Serine-Threonine Kinases/metabolism
3.
Int J Mol Sci ; 19(4)2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29561757

ABSTRACT

Astrocytes are glial cells that have an intimate physical and functional association with synapses in the brain. One of their main roles is to recycle the neurotransmitters glutamate and gamma-aminobutyric acid (GABA), as a component of the glutamate/GABA-glutamine cycle. They perform this function by sequestering neurotransmitters and releasing glutamine via the neutral amino acid transporter SNAT3. In this way, astrocytes regulate the availability of neurotransmitters and subsequently influence synaptic function. Since many plasma membrane transporters are regulated by protein kinase C (PKC), the aim of this study was to understand how PKC influences SNAT3 glutamine transport in astrocytes located immediately adjacent to synapses. We studied SNAT3 transport by whole-cell patch-clamping and fluorescence pH imaging of single astrocytes in acutely isolated brainstem slices, adjacent to the calyx of the Held synapse. Activation of SNAT3-mediated glutamine transport in these astrocytes was reduced to 77 ± 6% when PKC was activated with phorbol 12-myristate 13-acetate (PMA). This effect was very rapid (within ~20 min) and eliminated by application of bisindolylmaleimide I (Bis I) or 7-hydroxystaurosporine (UCN-01), suggesting that activation of conventional isoforms of PKC reduces SNAT3 function. In addition, cell surface biotinylation experiments in these brain slices show that the amount of SNAT3 in the plasma membrane is reduced by a comparable amount (to 68 ± 5%) upon activation of PKC. This indicates a role for PKC in dynamically controlling the trafficking of SNAT3 transporters in astrocytes in situ. These data demonstrate that PKC rapidly regulates the astrocytic glutamine release mechanism, which would influence the glutamine availability for adjacent synapses and control levels of neurotransmission.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Astrocytes/metabolism , Protein Kinase C/metabolism , Synapses/metabolism , Animals , Brain/metabolism , Endocytosis , Enzyme Activation , Isoenzymes/metabolism , Mice, Inbred C57BL , Rats, Wistar
4.
J Biol Chem ; 291(25): 13194-205, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27129276

ABSTRACT

Many cancer cells depend on glutamine as they use the glutaminolysis pathway to generate building blocks and energy for anabolic purposes. As a result, glutamine transporters are essential for cancer growth and are potential targets for cancer chemotherapy with ASCT2 (SLC1A5) being investigated most intensively. Here we show that HeLa epithelial cervical cancer cells and 143B osteosarcoma cells express a set of glutamine transporters including SNAT1 (SLC38A1), SNAT2 (SLC38A2), SNAT4 (SLC38A4), LAT1 (SLC7A5), and ASCT2 (SLC1A5). Net glutamine uptake did not depend on ASCT2 but required expression of SNAT1 and SNAT2. Deletion of ASCT2 did not reduce cell growth but caused an amino acid starvation response and up-regulation of SNAT1 to replace ASCT2 functionally. Silencing of GCN2 in the ASCT2(-/-) background reduced cell growth, showing that a combined targeted approach would inhibit growth of glutamine-dependent cancer cells.


Subject(s)
Amino Acid Transport System ASC/genetics , Amino Acid Transport System A/physiology , Cell Proliferation , Gene Deletion , Gene Expression , Glutamine/metabolism , HeLa Cells , Homeostasis , Humans , Ion Transport , Metabolic Networks and Pathways , Minor Histocompatibility Antigens
5.
J Biol Chem ; 290(40): 24308-25, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26240152

ABSTRACT

Many solute carrier 6 (SLC6) family transporters require ancillary subunits to modify their expression and activity. The main apical membrane neutral amino acid transporters in mouse intestine and kidney, B(0)AT1 and B(0)AT3, require the ancillary protein collectrin or ACE2 for plasma membrane expression. Expression and activity of SLC6 neurotransmitter transporters are modulated by interaction with syntaxin 1A. Utilizing monocarboxylate-B(0)AT1/3 fusion constructs, we discovered that collectrin is also necessary for B(0)AT1 and B(0)AT3 catalytic function. Syntaxin 1A and syntaxin 3 inhibit the membrane expression of B(0)AT1 by competing with collectrin for access. A mutagenesis screening approach identified residues on trans-membrane domains 1α, 5, and 7 on one face of B(0)AT3 as a key region involved in interaction with collectrin. Mutant analysis established residues that were involved in collectrin-dependent functions as follows: plasma membrane expression of B(0)AT3, catalytic activation, or both. These results identify a potential binding site for collectrin and other SLC6 ancillary proteins.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Animals , Binding Sites , Biotinylation , CHO Cells , Catalysis , Cricetinae , Cricetulus , Drosophila melanogaster , Humans , Membrane Glycoproteins/metabolism , Mice , Mutagenesis , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Qa-SNARE Proteins/metabolism , RNA Interference , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Syntaxin 1/metabolism , Xenopus laevis
6.
J Biol Chem ; 288(47): 33813-33823, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24121511

ABSTRACT

Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using the Slc6a19 gene as an example, encoding the neutral amino acid transporter B(0)AT1, we studied regulation of the gene by transcription factors and epigenetic factors in the intestine. To investigate this question, we used a fractionation method to separate mature enterocytes from crypt cells and analyzed gene expression. Transcription factors HNF1a and HNF4a activate transcription of the Slc6a19 gene in villus enterocytes, whereas high levels of SOX9 repress expression in the crypts. CpG dinucleotides in the proximal promoter were highly methylated in the crypt and fully de-methylated in the villus. Furthermore, histone modification H3K27Ac, indicating an active promoter, was prevalent in villus cells but barely detectable in crypt cells. The results suggest that Slc6a19 expression in the intestine is regulated at three different levels involving promoter methylation, histone modification, and opposing transcription factors.


Subject(s)
Amino Acid Transport Systems, Neutral/biosynthesis , Enterocytes/metabolism , Epigenesis, Genetic/physiology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Promoter Regions, Genetic/physiology , SOX9 Transcription Factor/metabolism , Transcription, Genetic/physiology , Amino Acid Transport Systems, Neutral/genetics , Animals , Cells, Cultured , DNA Methylation/physiology , Enterocytes/cytology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics , Histones/genetics , Histones/metabolism , Mice , Protein Processing, Post-Translational/physiology , SOX9 Transcription Factor/genetics
7.
Cell Physiol Biochem ; 33(5): 1591-606, 2014.
Article in English | MEDLINE | ID: mdl-24854847

ABSTRACT

BACKGROUND: Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. METHODS: Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. RESULTS: Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. CONCLUSIONS: Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.


Subject(s)
Acidosis/metabolism , Amino Acid Transport Systems, Neutral/biosynthesis , Amino Acid Transport Systems, Neutral/genetics , Acidosis/genetics , Animals , Cells, Cultured , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Mice , Organ Specificity/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/genetics
8.
Nat Commun ; 15(1): 3036, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589439

ABSTRACT

The Alanine-Serine-Cysteine transporter 1 (Asc-1 or SLC7A10) forms a crucial heterodimeric transporter complex with 4F2hc (SLC3A2) through a covalent disulfide bridge. This complex enables the sodium-independent transport of small neutral amino acids, including L-Alanine (L-Ala), Glycine (Gly), and D-Serine (D-Ser), within the central nervous system (CNS). D-Ser and Gly are two key endogenous glutamate co-agonists that activate N-methyl-d-aspartate (NMDA) receptors by binding to the allosteric site. Mice deficient in Asc-1 display severe symptoms such as tremors, ataxia, and seizures, leading to early postnatal death. Despite its physiological importance, the functional mechanism of the Asc-1-4F2hc complex has remained elusive. Here, we present cryo-electron microscopy (cryo-EM) structures of the human Asc-1-4F2hc complex in its apo state, D-Ser bound state, and L-Ala bound state, resolved at 3.6 Å, 3.5 Å, and 3.4 Å, respectively. Through detailed structural analysis and transport assays, we uncover a comprehensive alternating access mechanism that underlies conformational changes in the complex. In summary, our findings reveal the architecture of the Asc-1 and 4F2hc complex and provide valuable insights into substrate recognition and the functional cycle of this essential transporter complex.


Subject(s)
Membrane Transport Proteins , Serine , Mice , Humans , Animals , Cryoelectron Microscopy , Serine/metabolism , Membrane Transport Proteins/genetics , Glycine , Cysteine
9.
Biochem J ; 446(1): 135-48, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22677001

ABSTRACT

The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B(0)AT1 and B(0)AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B(0)AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B(0)AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (V(max)). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B(0)AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B(0)AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , CD13 Antigens/metabolism , Intestine, Small/metabolism , Peptidyl-Dipeptidase A/metabolism , Amino Acid Transport Systems, Neutral/genetics , Angiotensin-Converting Enzyme 2 , Animals , CD13 Antigens/genetics , Cells, Cultured , Female , Humans , Kinetics , Male , Mice , Mice, Inbred C57BL , Microvilli/metabolism , Oocytes/metabolism , Peptidyl-Dipeptidase A/genetics , Protein Transport , Xenopus laevis
10.
Nat Genet ; 36(9): 1003-7, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15286788

ABSTRACT

Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Hartnup Disease/genetics , Mutation , Amino Acid Sequence , Chromosomes, Human, Pair 5 , Cloning, Molecular , Gene Frequency , Humans , Kidney/metabolism , Molecular Sequence Data , Pedigree
11.
Metabolites ; 13(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37887389

ABSTRACT

The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.

12.
Biomolecules ; 13(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36830670

ABSTRACT

Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC-MS to detect the movement of 12C- and 13C-labelled amino acid mixtures across the plasma membrane of Xenopus laevis oocytes expressing a variety of amino acid antiporters. Differences of substrate specificity between transporter paralogs were readily observed using this method. Our results suggest that antiporters are largely symmetric, equalizing the pools of their substrate amino acids. Exceptions are the antiporters y+LAT1 and y+LAT2 where neutral amino acids are co-transported with Na+ ions, favouring their import. For the antiporters ASCT1 and ASCT2 glycine acted as a selective influx substrate, while proline was a selective influx substrate of ASCT1. These data show that antiporters can display non-canonical modes of transport.


Subject(s)
Amino Acids , Antiporters , Amino Acids/metabolism , Substrate Specificity , Antiporters/metabolism , Proline/metabolism , Biological Transport
13.
J Biol Chem ; 286(30): 26638-51, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21636576

ABSTRACT

Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Body Weight/physiology , Eating/physiology , Epithelial Cells/metabolism , Signal Transduction/physiology , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acid Transport Systems, Neutral/genetics , Animals , Dietary Proteins , Hartnup Disease/genetics , Hartnup Disease/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Insulin Secretion , Mice , Mice, Mutant Strains , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Neurochem Res ; 37(11): 2562-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22878645

ABSTRACT

Metabolism of short-chain fatty acids (SCFA) in the brain, particularly that of acetate, appears to occur mainly in astrocytes. The differential use has been attributed to transport, but the extent to which transmembrane movement of SCFA is mediated by transporters has not been investigated systematically. Here we tested the possible contribution of monocarboxylate transporters to SCFA uptake by measuring fluxes with labelled compounds and by following changes of the intracellular pH in Xenopus laevis oocytes expressing the isoforms MCT1, MCT2 or MCT4. All isoforms mediated significant transport of acetate. Formate, however, was transported only by MCT1. The contribution of MCT1 to SCFA transport was determined by using phloretin as a high-affinity inhibitor, which allowed a paired comparison of oocytes with and without active MCT1.


Subject(s)
Fatty Acids/metabolism , Monocarboxylic Acid Transporters/metabolism , Animals , Biological Transport , Female , Hydrogen-Ion Concentration , Xenopus laevis
15.
Nature ; 443(7111): 582-5, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17006451

ABSTRACT

As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration and there is therefore a large inward Na+ gradient across the parasite plasma membrane. Here we show that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (P(i)), an essential nutrient. P(i) was taken up into the intracellular parasite by a Na+-dependent transporter, with a stoichiometry of 2Na+:1P(i) and with an apparent preference for the monovalent over the divalent form of P(i). A P(i) transporter (PfPiT) belonging to the PiT family was cloned from the parasite and localized to the parasite surface. Expression of PfPiT in Xenopus oocytes resulted in Na+-dependent P(i) uptake with characteristics similar to those observed for P(i) uptake in the parasite. This study provides new insight into the significance of the malaria-parasite-induced alteration of the ionic composition of its host cell.


Subject(s)
Malaria/parasitology , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Sodium/pharmacology , Animals , Biological Transport/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Hydrogen-Ion Concentration , Kinetics , Oocytes , Phylogeny , Saponins/pharmacology , Xenopus
16.
Front Pharmacol ; 13: 963066, 2022.
Article in English | MEDLINE | ID: mdl-36210829

ABSTRACT

SNAT2 (SLC38A2) is a sodium-dependent neutral amino acid transporter, which is important for the accumulation of amino acids as nutrients, the maintenance of cellular osmolarity, and the activation of mTORC1. It also provides net glutamine for glutaminolysis and consequently presents as a potential target to treat cancer. A high-throughput screening assay was developed to identify new inhibitors of SNAT2 making use of the inducible nature of SNAT2 and its electrogenic mechanism. Using an optimized FLIPR membrane potential (FMP) assay, a curated scaffold library of 33934 compounds was screened to identify 3-(N-methyl (4-methylphenyl)sulfonamido)-N-(2-trifluoromethylbenzyl)thiophene-2-carboxamide as a potent inhibitor of SNAT2. In two different assays an IC50 of 0.8-3 µM was determined. The compound discriminated against the close transporter homologue SNAT1. MDA-MB-231 breast cancer and HPAFII pancreatic cancer cell lines tolerated the SNAT2 inhibitor up to a concentration of 100 µM but in combination with tolerable doses of the glucose transport inhibitor Bay-876, proliferative growth of both cell lines was halted. This points to synergy between inhibition of glycolysis and glutaminolysis in cancer cells.

17.
J Clin Invest ; 118(12): 3881-92, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19033659

ABSTRACT

Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes.


Subject(s)
Amino Acid Transport Disorders, Inborn/genetics , Amino Acid Transport Systems, Neutral/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Mutation , Pedigree , Penetrance , Alleles , Amino Acid Transport Disorders, Inborn/urine , Amino Acid Transport Systems, Neutral/metabolism , Family , Female , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Male
18.
Biochem J ; 428(3): 397-407, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20377526

ABSTRACT

Renal maturation occurs post-natally in many species and reabsorption capacity at birth can vary substantially from the mature kidney. However, little is known regarding the maturation of amino acid transport mechanisms, despite the well-known physiological state of developmental iminoglycinuria. Commonly seen during early infancy, developmental iminoglycinuria is a transient version of the persistent inherited form of the disorder, referred to as iminoglycinuria, and manifests as a urinary hyperexcretion of proline, hydroxyproline and glycine. The transporters involved in developmental iminoglycinuria and their involvement in the improvement of renal reabsorption capacity remain unknown. qPCR (quantitative real-time PCR) and Western blot analysis in developing mouse kidney revealed that the expression of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 was lower at birth (approx. 3.4-, 5.0-, 2.4- and 3.0-fold less than adult kidney by qPCR respectively) and increased during development. Furthermore, immunofluorescence confocal microscopy demonstrated the absence of apical expression of Slc6a18, Slc6a19, Slc6a20a and the auxiliary protein collectrin in kidneys of mice at birth. This correlated with the detection of iminoglycinuria during the first week of life. Iminoglycinuria subsided (proline reduction preceded glycine) in the second week of life, which correlated with an increase in the expression of Slc6a19 and Slc6a20a. Mice achieved an adult imino acid and glycine excretion profile by the fourth week, at which time the expression level of all transporters was comparable with adult mice. In conclusion, these results demonstrate the delayed expression and maturation of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 in neonatal mice and thus the molecular mechanism of developmental iminoglycinuria.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Glycine/metabolism , Imino Acids/metabolism , Kidney/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Transport Systems, Neutral/genetics , Animals , Biological Transport , Glycine/urine , Imino Acids/urine , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Xenopus laevis
19.
Front Mol Biosci ; 8: 646574, 2021.
Article in English | MEDLINE | ID: mdl-33928121

ABSTRACT

Amino acid transporters play a vital role in metabolism and nutrient signaling pathways. Typically, transport activity is investigated using single substrates and competing amounts of other amino acids. We used GC-MS and LC-MS for metabolic screening of Xenopus laevis oocytes expressing various human amino acid transporters incubated in complex media to establish their comprehensive substrate profiles. For most transporters, amino acid selectivity matched reported substrate profiles. However, we could not detect substantial accumulation of cationic amino acids by SNAT4 and ATB0,+ in contrast to previous reports. In addition, comparative substrate profiles of two related sodium neutral amino acid transporters known as SNAT1 and SNAT2, revealed the latter as a significant leucine accumulator. As a consequence, SNAT2, but not SNAT1, was shown to be an effective activator of the eukaryotic cellular growth regulator mTORC1. We propose, that metabolomic profiling of membrane transporters in Xe nopus laevis oocytes can be used to test their substrate specificity and role in intracellular signaling pathways.

20.
Nat Commun ; 12(1): 5282, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489418

ABSTRACT

Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell's endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Homeostasis/genetics , Models, Statistical , Neuroglia/metabolism , A549 Cells , Amino Acid Transport Systems/chemistry , Amino Acid Transport Systems/classification , Amino Acid Transport Systems/genetics , Animals , Biological Transport , Cell Line, Tumor , Cell Membrane/metabolism , Computer Simulation , Gene Expression , Humans , Kinetics , Metabolomics/methods , Neuroglia/cytology , Oocytes/cytology , Oocytes/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL