Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Neurochem Res ; 46(1): 120-130, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32285377

ABSTRACT

Most pharmacological studies concerning the beneficial effects of organoselenium compounds have focused on their ability to mimic glutathione peroxidase (GPx). However, mechanisms other than GPx-like activity might be involved on their biological effects. This study was aimed to investigate and compare the protective effects of two well known [(PhSe)2 and PhSeZnCl] and two newly developed (MRK Picolyl and MRK Ester) organoselenium compounds against oxidative challenge in cultured neuronal HT22 cells. The thiol peroxidase and oxidase activities were performed using the glutathione reductase (GR)-coupled assay. In order to evaluate protective effects of the organoselenium compounds against oxidative challenge in neuronal HT22 cells, experiments based on glutamate-induced oxytosis and SIN-1-mediated peroxynitrite generation were performed. The thiol peroxidase activities of the studied organoselenium compounds were smaller than bovine erythrocytes GPx enzyme. Besides, (PhSe)2 and PhSeZnCl showed higher thiol peroxidase and lower thiol oxidase activities compared to the new compounds. MRK Picolyl and MRK Ester, which showed lower thiol peroxidase activity, showed higher thiol oxidase activity. Both pre- or co-treatment with (PhSe)2, PhSeZnCl, MRK Picolyl and MRK Ester protected HT22 cells against glutamate-induced cytotoxicity. (PhSe)2 and MRK Picolyl significantly prevented peroxinitrite-induced dihydrorhodamine oxidation, but this effect was observed only when HT22 were pre-treated with these compounds. The treatment with (PhSe)2 increased the protein expression of antioxidant defences (Prx3, CAT and GCLC) in HT22 cells. Taking together, our results suggest that the biological effects elicited by these compounds are not directly related to their GPx-mimetic and thiol oxidase activities, but might be linked to the up-regulation of endogenous antioxidant defences trough their thiol-modifier effects.


Subject(s)
Antioxidants/pharmacology , Neurons/drug effects , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Animals , Catalase/metabolism , Cattle , Cell Line , Glutamate-Cysteine Ligase/metabolism , Glutathione Peroxidase/metabolism , Homeodomain Proteins/metabolism , Mice
2.
Angew Chem Int Ed Engl ; 60(34): 18454-18460, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34097781

ABSTRACT

Herein, we report a KIO4 -mediated, sustainable and chemoselective approach for the one-pot C(sp2 )-H bond hydroxymethylation or methylenation of imidazo-heteroarenes with formaldehyde, generated in situ via the oxidative cleavage of ethylene glycol or glycerol (renewable reagents) through the Malaprade reaction. In the presence of ethylene glycol, a series of 3-hydroxymethyl-imidazo-heteroarenes was obtained in good to excellent yields. These compounds are important intermediates to access pharmaceutical drugs, e.g., Zolpidem. Furthermore, by using glycerol, bis(imidazo[1,2-a]pyridin-3-yl)methane derivatives were selectively obtained in good to excellent yields.

3.
Biochem Biophys Res Commun ; 503(3): 1291-1297, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30017191

ABSTRACT

A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 µM and 12.5 µM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , DNA Cleavage/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Org Biomol Chem ; 16(20): 3777-3787, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29737350

ABSTRACT

Excessive production of reactive species in living cells usually has pathological effects. Consequently, the synthesis of compounds which can mimic the activity of antioxidant enzymes has inspired great interest. In this study, a variety of diselenoamino acid derivatives from phenylalanine and valine were tested to determine whether they could be functional mimics of glutathione peroxidase (GPx) and substrates for liver thioredoxin reductase (TrxR). Diselenides C and D showed the best GPx mimicking properties when compared with A and B. We suppose that the catalytic activity of diselenide GPx mimics depends on the steric effects, which can be influenced by the number of carbon atoms between the selenium atom and the amino acid residue and/or by the amino acid lateral residue. Compounds C and D stimulated NADPH oxidation in the presence of partially purified hepatic mammalian TrxR, indicating that they are substrates for TrxR. Our study indicates a possible dissociation between the two pathways for peroxide degradation (i.e., via a substrate for TrxR or via mimicry of GPx) for compounds tested in this study, except for PhSeSePh, and the antioxidant activity of diselenoamino acids can also be attributed to their capacity to mimic GPx and to be a substrate for mammalian TrxR.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Computer Simulation , Glutathione Peroxidase/metabolism , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Animals , Catalytic Domain , Male , Models, Molecular , Molecular Docking Simulation , Oxidation-Reduction , Rats , Thioredoxin-Disulfide Reductase/chemistry
5.
BMC Microbiol ; 16(1): 220, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27654924

ABSTRACT

BACKGROUND: Organoselenium compounds have antimicrobial activity against some bacteria and fungi; furthermore, the antioxidant activity of diselenides has been demonstrated. The aim of the present work was to examine the in vitro minimal inhibitory concentration of a panel of differently substituted diselenides and their effectiveness in inhibiting biofilm formation and dispersing preformed microbial biofilm of Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa and the yeast Candida albicans, all involved in wound infections. Moreover, the cytotoxicity of the compounds was determined in human dermal fibroblast and keratinocytes. In closing, we tested their direct antioxidant activity. RESULTS: Diselenides showed different antimicrobial activity, depending on the microorganism. All diselenides demonstrated a good antibiofilm activity against S. aureus and S. epidermidis, the compounds camphor diselenide, bis[ethyl-N-(2'-selenobenzoyl) glycinate] and bis[2'-seleno-N-(1-methyl-2-phenylethyl) benzamide] were active against S. pyogenes and C. albicans biofilm while only diselenides 2,2'-diselenidyldibenzoic acid and bis[ethyl-N-(2'-selenobenzoyl) glycinate] were effective against P. aeruginosa. Moreover, the compounds bis[ethyl-N-(2'-selenobenzoyl) glycinate] and bis[2'-seleno-N-(1-methyl-2-phenylethyl) benzamide] showed an antioxidant activity at concentrations lower than the 50 % of cytotoxic concentration. CONCLUSIONS: Because microbial biofilms are implicated in chronic infection of wounds and treatment failure, the combination of antimicrobial activity and potential radical scavenging effects may contribute to the improvement of wound healing. Therefore, this study suggests that bis[ethylN-(2'-selenobenzoyl) glycinate] and bis[2'-seleno-N-(1-methyl-2-phenylethyl) benzamide] are promising compounds to be used in preventing and treating microbial wound infections.

6.
Molecules ; 20(6): 10095-109, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26039333

ABSTRACT

In this paper, we report the synthesis and biological evaluation of picolylamide-based diselenides with the aim of developing a new series of diselenides with O···Se non-bonded interactions. The synthesis of diselenides was performed by a simple and efficient synthetic route. All the products were obtained in good yields and their structures were determined by 1H-NMR, 13C-NMR and HRMS. All these new compounds showed promising activities when tested in different antioxidant assays. These amides exhibited strong thiol peroxidase-like (TPx) activity. In fact one of the compounds showed 4.66 times higher potential than the classical standard i.e., diphenyl diselenide. The same compound significantly inhibited iron (Fe)-induced thiobarbituric acid reactive species (TBARS) production in rat's brain homogenate. In addition, the X-ray structure of the most active compound showed non-bonded interaction between the selenium and the oxygen atom that are in close proximity and may be responsible for the increased antioxidant activity. The present study provides evidence about the possible biochemical influence of nonbonding interactions on organochalcogens potency.


Subject(s)
Amides/chemical synthesis , Antioxidants/chemical synthesis , Organoselenium Compounds/chemical synthesis , Picolinic Acids/chemical synthesis , Pyridines/chemical synthesis , Amides/pharmacology , Animals , Antioxidants/pharmacology , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Brain/drug effects , Brain/metabolism , Complex Mixtures/chemistry , Lipid Peroxidation/drug effects , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Peroxidases/chemistry , Picolinic Acids/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/chemistry
7.
Org Biomol Chem ; 12(21): 3470-7, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24752799

ABSTRACT

In this paper we report the design, synthesis and evaluation of a series of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for Alzheimer's disease. The compounds show excellent results as acetylcholinesterase inhibitors, being as active as the standard drug. All these compounds also show very good antioxidant activity through different mechanisms of action.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Molecular Targeted Therapy , Pyrimidinones/chemical synthesis , Pyrimidinones/therapeutic use , Selenium/therapeutic use , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Humans , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics
8.
Biomedicines ; 12(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255318

ABSTRACT

Leishmaniasis remains a significant global health concern, with current treatments relying on outdated drugs associated with high toxicity, lengthy administration, elevated costs, and drug resistance. Consequently, the urgent need for safer and more effective therapeutic options in leishmaniasis treatment persists. Previous research has highlighted selenium compounds as promising candidates for innovative leishmaniasis therapy. In light of this, a library of 10 selenium-containing diverse compounds was designed and evaluated in this study. These compounds included selenium-substituted indole, coumarin, chromone, oxadiazole, imidazo[1,2-a]pyridine, Imidazo[2,1-b]thiazole, and oxazole, among others. These compounds were screened against Leishmania amazonensis promastigotes and intracellular amastigotes, and their cytotoxicity was assessed in peritoneal macrophages, NIH/3T3, and J774A.1 cells. Among the tested compounds, MRK-106 and MRK-108 displayed the highest potency against L. amazonensis promastigotes with reduced cytotoxicity. Notably, MRK-106 and MRK-108 exhibited IC50 values of 3.97 µM and 4.23 µM, respectively, and most of the tested compounds showed low cytotoxicity in host cells (CC50 > 200 µM). Also, compounds MRK-107 and MRK-113 showed activity against intracellular amastigotes (IC50 18.31 and 15.93 µM and SI 12.55 and 10.92, respectively). In conclusion, the identified selenium-containing compounds hold potential structures as antileishmanial drug candidates to be further explored in subsequent studies. These findings represent a significant step toward the development of safer and more effective therapies for leishmaniasis, addressing the pressing need for novel and improved treatments.

9.
Cell Biochem Funct ; 31(2): 152-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22961633

ABSTRACT

From a pharmacological point of view, organoseleniums are compounds with important and interesting antioxidant and biological activities. The aim of this study was to evaluate the hepatoprotective effect of bis(4-methylbenzoyl) diselenide (BMD) against carbon tetrachloride (CCl4 )-induced oxidative damage in mice. The animals received BMD (25 mg/kg p.o., for 3 days), and after 1 day, CCl4 (1 mg/kg body weight) was administered by intraperitoneal route. One day after the CCl4 exposure, the animals were euthanized for biochemical and histological analysis. Treatment with BMD (25 mg/kg p.o.) protected against aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase and lactate dehydrogenase activity increases induced by CCl4 plasma exposure. Treatment with BMD (25 mg/kg) protected against increases in thiobarbituric reactive species and decreasing non-protein thiols and ascorbic acid levels in liver of mice. Catalase and superoxide dismutase activity inhibition in the liver caused by CCl4 were protected by treatment with BMD (25 mg/kg). Glutathione S-transferase activity was inhibited by CCl4 and remained unaltered even after treatment with BMD. Sections of liver from CCl4 -exposed mice presented an intense infiltration of inflammatory cells and loss of the cellular architecture. BMD (25 mg/kg) attenuated CCl4 -induced hepatic histological alterations. The results demonstrated the hepatoprotective effects of BMD in the mouse liver, possibly by modulating the antioxidant status.


Subject(s)
Liver/pathology , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Protective Agents/pharmacology , Selenium/pharmacology , Amino Acids/metabolism , Animals , Carbon Tetrachloride , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/enzymology , Male , Mice , Organoselenium Compounds/administration & dosage , Organoselenium Compounds/chemistry , Protective Agents/administration & dosage , Protective Agents/chemistry , Selenium/administration & dosage , Selenium/chemistry , Sulfhydryl Compounds/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
10.
ACS Chem Neurosci ; 14(6): 1181-1192, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36853167

ABSTRACT

The present study investigated the antidepressant-like potential of a functionalized 3-selanyl benzo[b]furan (SeBZF) in male Swiss mice. To evaluate possible antidepressant-like actions, the compounds SeBZF1-5 (50 mg/kg, intragastric, i.g., route) were acutely screened in the tail suspension tests (TSTs). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) was then selected. Dose-response and time-response curves revealed that SeBFZ3 exerts antidepressant-like effects in the TST (5-50 mg/kg) and forced swimming test (FST; 50 mg/kg). Additional tests demonstrated that pretreatment with receptor antagonists WAY100635 (5-HT1A; 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/C; 1 mg/kg, intraperitoneal, i.p.), or ondansetron (5-HT3; 1 mg/kg, i.p.) blocked the SeBZF3 antidepressant-like effects (50 mg/kg) in the TST. In addition, the coadministration of subeffective doses of SeBZF3 (1 mg/kg, i.g.) and fluoxetine (a selective serotonin reuptake inhibitor; 5 mg/kg, i.p.) produced synergistic action. A high dose of SeBZF3 (300 mg/kg) did not produce oral acute toxicity. The present results provide evidence for the antidepressant-like action of SeBZF3 and its relative safety, as well as predict the possible interactions with the serotonergic system, aiding in the development of novel options to alleviate psychiatric disabilities.


Subject(s)
Antidepressive Agents , Serotonin , Male , Mice , Animals , Serotonin/physiology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Swimming/psychology , Hindlimb Suspension/methods , Hindlimb Suspension/psychology , Depression/drug therapy
11.
ACS Chem Neurosci ; 14(16): 2857-2867, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37499207

ABSTRACT

Oxidative glutamate toxicity is regarded as one of the injurious mechanisms associated with ischemic stroke, which represents a major health problem and requires improved pharmacological treatments. We designed and synthesized two new probucol analogues [2,6-di-tert-butyl-4-selenocyanatophenol (C1) and 4,4'-diselanediylbis (2,6-di-tert-butylphenol) (C2)] and investigated their effects against glutamate-induced neuronal oxidative toxicity in vitro in cultured HT22 cells, compared with their parental compound (probucol). In addition, C2, which exhibited the lowest toxicity, was investigated in an in vivo rodent model of ischemic stroke. Glutamate caused concentration- and time-dependent cytotoxicity in HT22 neuronal cells, which was preceded by increased levels of oxidants and depletion of the antioxidant glutathione. The analogues (C1 and C2), but not probucol, significantly decreased the levels of oxidants (including mitochondrial superoxide anion and lipid reactive oxygen species (ROS)) and protected against glutamate-induced cytotoxicity. In the in vivo model of ischemic stroke, which was based on central injections of the vasoconstrictor agent endothelin-1 (800 pmol/site), C2 (20 or 50 mg/kg/day, intraperitoneally, for 4 consecutive days after stroke) displayed significant beneficial effects against ischemic injury in vivo, improving rats' motor-related behavioral skills and decreasing stroke-related striatal gliosis. This is the first study to design, synthesize, and present a probucol analogue (C2) with in vivo beneficial effects against ischemic stroke. This novel compound, which was able to mitigate glutamate-induced oxidative toxicity in vitro, represents a promising neuroprotective drug.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Rats , Animals , Probucol/pharmacology , Neuroprotection , Glutamic Acid/toxicity , Rodentia , Oxidative Stress , Neuroprotective Agents/pharmacology , Oxidants/pharmacology
12.
Pharmacol Biochem Behav ; 232: 173651, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37793485

ABSTRACT

Anxiety disorders, characterized by high prevalence rates, cause psychiatric disabilities and are related to impairments in serotoninergic system function. Frequent anxiety recurrence, resistance, and drug adverse effects have driven searches for new therapies. We initially evaluated the anxiolytic-like activity of 3-selanyl-benzo[b]furan compounds (SeBZF1-5) (50 mg/kg, i.g.) in male Swiss mice using the light-dark test (LDT). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) exhibited anxiolytic-like activity. SeBZF3 anxiolytic-like effects were also observed in the novelty-suppressed feeding test (NSFT) (50 mg/kg) and elevated plus-maze test (EPMT) (25 and 50 mg/kg). In the EPMT, anxiolytic-like effects of SeBZF3 (50 mg/kg) were abolished by pretreatment with p-chlorophenylalanine, a selective tryptophan hydroxylase inhibitor (100 mg/kg, i.p. for 4 days), suggesting the involvement of serotonergic mechanisms. Furthermore, we conducted experiments to investigate the synergistic effects of SeBZF3 subeffective doses (5 mg/kg, i.g.) in combination with fluoxetine (a selective serotonin reuptake inhibitor, 5 mg/kg, i.p.) or buspirone (a partial agonist of the 5-HT1A receptor, 2 mg/kg, i.p.). This coadministration resulted in pronounced synergistic effects. We also examined the effects of repeated oral treatment with SeBZF3 at doses of 1 and 5 mg/kg over 14 days and both reduced anxiety signals. In vitro and ex vivo findings revealed that SeBZF3 inhibited cerebral MAO-A activity. These findings collectively imply the potential involvement of serotonergic mechanisms in the anxiolytic-like activity of SeBZF3 in mice. These data offer contributions to the research field of organoselenium compounds and anxiolytics, encouraging the broadening of the search for new effective drugs while offering improved side effect profiles.

13.
Mol Cell Biochem ; 365(1-2): 85-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22311601

ABSTRACT

The antioxidant properties of organoselenium compounds have been extensively investigated because oxidative stress is a hallmark of a variety of chronic human diseases. Here, we reported the influence of substituent groups in the antioxidant activity of ß-selenoamines. We have investigated whether they exhibited glutathione peroxidase-like (GPx-like) activity and whether they could be substrate of thioredoxin reductase (TrxR). In the DPPH assay, the ß-selenium amines did not exhibit antioxidant activity. However, the ß-selenium amines with p-methoxy and tosyl groups prevented the lipid peroxidation. The ß-selenium amine compound with p-methoxy substituent group exhibited thiol-peroxidase-like activity (GPx-like activity) and was reduced by the hepatic TrxR. These results contribute to understand the influence of structural alteration of non-conventional selenium compounds as synthetic mimetic of antioxidant enzymes of mammalian organisms.


Subject(s)
Free Radical Scavengers/chemistry , Organoselenium Compounds/chemistry , Peroxidases/chemistry , Animals , Biphenyl Compounds/chemistry , Brain/drug effects , Brain/metabolism , Catalysis , Free Radical Scavengers/pharmacology , Free Radicals/chemistry , Lipid Peroxidation , Liver/enzymology , Male , NADP/chemistry , Organoselenium Compounds/pharmacology , Oxidation-Reduction , Peroxidases/pharmacology , Picrates/chemistry , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/isolation & purification
14.
Neurotoxicology ; 88: 14-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34718060

ABSTRACT

In a previous in vitro study, dihydropyrimidinone-derived selenoesteres demonstrated antioxidant properties, metal chelators and inhibitory acetylcholinesterase (AChE) activity, making these compounds promising candidates for Alzheimer's Disease (AD) treatment. However, these effects have yet to be demonstrated in an in vivo animal model; therefore, this study aimed to evaluate the safety and efficacy of eight selenoester compounds in a Caenorhabditis elegans model using transgenic strains for amyloid-beta peptide (Aß) aggregation. The L1 stage worms were acutely exposed (30 min) to the compounds at concentrations ranging from 5 to 200 µM and after 48 h the maintenance temperature was increased to 25 ° C for Aß expression and aggregation. After 48 h, several parameters related to phenotypic manifestations of Aß toxicity and mechanistic elucidation were analyzed. At the concentrations tested no significant toxicity of the compounds was found. The selenoester compound FA90 significantly reduced the rate of paralyzed worms and increased the number of swimming movements compared to the untreated worms. In addition, FA90 and FA130 improved egg-laying induced by levamisole and positively modulated HSP-6 and HSP-4 expression, thereby increasing reticular and mitochondrial protein folding response in C. elegans, which could attenuate Aß aggregation in early exposure. Therefore, our initial screening using an alternative model demonstrated that FA90, among the eight selenoesters evaluated, was the most promising compound for AD evaluation screening in more complex animals.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Organoselenium Compounds/pharmacology , Pyrimidinones/pharmacology , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caenorhabditis elegans , Disease Models, Animal , Levamisole/pharmacology , Neuroprotective Agents/adverse effects , Organisms, Genetically Modified , Organoselenium Compounds/adverse effects , Oviposition/drug effects , Pyrimidinones/adverse effects
15.
Curr Med Chem ; 29(14): 2530-2564, 2022.
Article in English | MEDLINE | ID: mdl-34313197

ABSTRACT

BACKGROUND: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be important in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHODS: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed immunomodulatory effects in previous studies. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidates for the search of antibiotics against COVID-19.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Discovery , Humans , Immunity , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
16.
Free Radic Res ; 55(11-12): 1062-1079, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34895012

ABSTRACT

Ferroptosis, an iron-dependent form of cell death, has critical roles in diverse pathologies. Data on the temporal events mediating the prevention of ferroptosis are lacking. Focused on temporal aspects of cytotoxicity/protection, we investigated the effects of classic (Fer-1) and novel [2,6-di-tert-butyl-4-(2-thienylthio)phenol (C1) and 2,6-di-tert-butyl-4-(2-thienylselano)phenol (C2)] anti-ferroptotic agents against RSL3-, BSO- or glutamate-induced ferroptosis in cultured HT22 neuronal cell line, comparing their effects with those of the antioxidants trolox, ebselen and probucol. Glutamate (5 mM), BSO (25 µM) and RSL3 (50 nM) decreased approximately 40% of cell viability at 24 h. At these concentrations, none of these agents changed cell viability at 6 h after treatments; RSL3 increased lipoperoxidation from 6 h, although BSO and glutamate only did so at 12 h after treatments. At similar conditions, BSO and glutamate (but not RSL3) decreased GSH levels at 6 h after treatments. Fer-1, C1 and C2 exhibited similar protective effects against glutamate-, BSO- and RSL3-cytotoxicity, but this protection was limited when the protective agents were delivered to cells at time-points characterized by increased lipoperoxidation (but not glutathione depletion). Compared to Fer-1, C1 and C2, the anti-ferroptotic effects of trolox, ebselen and probucol were minor. Cytoprotective effects were not associated with direct antioxidant efficacies. These results indicate that the temporal window is central in affecting the efficacies of anti-ferroptotic drugs in acute scenarios; ferroptosis prevention is improbable when significant rates of lipoperoxidation were already achieved. C1 and C2 displayed remarkable cytoprotective effects, representing a promising new class of compounds to treat ferroptosis-related pathologies.


Subject(s)
Ferroptosis , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Death , Glutamic Acid/pharmacology , Glutathione/metabolism , Lipid Peroxidation , Phenol/pharmacology , Probucol/pharmacology
17.
Psychopharmacology (Berl) ; 238(10): 3013-3024, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34312682

ABSTRACT

RATIONALE: Depression is a psychiatric disorder that constitutes one of the leading causes of disability worldwide. 2-Phenyl-3-(phenylselanyl)benzofuran (SeBZF1) has been studied as a potential antidepressant drug, but its pharmacological action needs more investigation. OBJECTIVES AND METHODS: Our aim was to extend information about the antidepressant-like action of SeBZF1 using the mouse tail suspension test (TST). Initial experiments investigated the mechanisms involved in the acute antidepressant-like action of SeBZF1 in male Swiss mice. For this purpose, males received noradrenergic or dopaminergic receptor antagonists before acute SeBZF1 administration (50 mg/kg, per oral). In parallel, effects of combined treatment with SeBZF1 and bupropion at sub-effective doses (1 and 3 mg/kg, respectively) were tested. The next experiments were designed to determine the acute effects of SeBZF1 in females through a dose-response curve (5-50 mg/kg). Lastly, the efficacy of a 7-day repeated treatment with SeBZF1 (1 and 5 mg/kg) in mice of both sexes and its safety were evaluated. TST and the open-field test (OFT) were employed in all behavioral experiments. RESULTS: Pre-administration of dopaminergic antagonists (SCH23390, a selective D1R antagonist; sulpiride, a selective D2/D3R antagonist; and haloperidol, a non-selective antagonist), but not of adrenergic α1, α2, and ß-R antagonists, blocked the acute antidepressant-like effects of SeBZF1 in males. Co-administration of sub-effective doses of SeBZF1 and bupropion reduced the depressive phenotype. In addition, acute treatment with SeBZF1 at 50 mg/kg produced a reduction of female immobility. Finally, repeated treatment with SeBZF1 (1 and 5 mg/kg) was effective in causing antidepressant-like effects in both sexes. Locomotor activity, plasma transaminases, and urea levels remained unaltered after SeBZF1 exposure. CONCLUSION: Our findings provide evidence of the involvement of the dopaminergic system in the acutely antidepressant-like action of SeBZF1 in male mice and reveal the compound efficacy when acute or repeatedly administered in both sexes.


Subject(s)
Antidepressive Agents , Benzofurans , Animals , Antidepressive Agents/pharmacology , Benzofurans/pharmacology , Depression/drug therapy , Dopamine , Dopamine Antagonists , Dose-Response Relationship, Drug , Female , Hindlimb Suspension , Male , Mice , Swimming
18.
Mol Neurobiol ; 57(8): 3273-3290, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32514861

ABSTRACT

Probucol, a hypocholesterolemic compound, is neuroprotective in several models of neurodegenerative diseases but has serious adverse effects in vivo. We now describe the design and synthesis of two new probucol analogues that protect against glutamate-induced oxidative cell death, also known as ferroptosis, in cultured mouse hippocampal (HT22) cells and in primary cortical neurons, while probucol did not show any protective effect. Treatment with both compounds did not affect glutathione depletion but still significantly decreased glutamate-induced production of oxidants, mitochondrial superoxide generation, and mitochondrial hyperpolarization in HT22 cells. Both compounds increase glutathione peroxidase (GPx) 1 levels and GPx activity, also exhibiting protection against RSL3, a GPx4 inactivator. These two compounds are therefore potent activators of GPx activity making further studies of their neuroprotective activity in vivo worthwhile.


Subject(s)
Ferroptosis/drug effects , Glutathione Peroxidase/drug effects , Mitochondria/drug effects , Probucol/pharmacology , Animals , Antioxidants/metabolism , Cell Death/drug effects , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Mice , Mitochondria/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
19.
Mutat Res ; 673(2): 133-40, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19429514

ABSTRACT

The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3'3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 microM, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 microM, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different, as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD.


Subject(s)
Antimutagenic Agents/pharmacology , DNA Damage/drug effects , Organoselenium Compounds/pharmacology , Animals , Catalase/metabolism , Cells, Cultured , Cricetinae , Cricetulus , Cytoprotection/drug effects , Drug Evaluation, Preclinical , Models, Biological , Mutagenicity Tests , Saccharomyces cerevisiae/drug effects , Salmonella typhimurium/drug effects , Stem Cells/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
20.
Mol Neurobiol ; 55(10): 7619-7634, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29430618

ABSTRACT

Recent studies have shown that probucol (PB), a hipocholesterolemic agent with antioxidant and anti-inflammatory properties, presents neuroprotective properties. On the other hand, adverse effects have limited PB's clinical application. Thus, the search for PB derivatives with no or less adverse effects has been a topic of research. In this study, we present a novel organoselenium PB derivative (RC513) and investigate its potential protective activity in an in vitro experimental model of oxidative toxicity induced by tert-butyl hydroperoxide (tBuOOH) in HT22 neuronal cells, as well as exploit potential protective mechanisms. tBuOOH exposure caused a significant decrease in the cell viability, which was preceded by (i) increased reactive species generation and (ii) decreased mitochondrial maximum oxygen consumption rate. RC513 pretreatment (48 h) significantly prevented the tBuOOH-induced decrease of cell viability, RS generation, and mitochondrial dysfunction. Of note, RC513 significantly increased glutathione peroxidase (GPx) activity and mRNA expression of GPx1, a key enzyme involved in peroxide detoxification. The use of mercaptosuccinic acid, an inhibitor of GPx, significantly decreased the protective activity of RC513 against tBuOOH-induced cytotoxicity in HT22 cells, highlighting the importance of GPx upregulation in the observed protection. In summary, the results showed a significant protective activity of a novel PB derivative against tBuOOH-induced oxidative stress and mitochondrial dysfunction, which was related to the upregulation of GPx. Our results point to RC513 as a promising neuroprotective molecule, even though studies concerning potential beneficial effects and safety aspects of RC513 under in vivo conditions are well warranted.


Subject(s)
Drug Design , Glutathione Peroxidase/metabolism , Neurons/enzymology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Probucol/chemical synthesis , Probucol/pharmacology , Up-Regulation , Animals , Cell Line , Cell Survival/drug effects , Glutathione Peroxidase/genetics , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Oxidative Stress/drug effects , Oxygen Consumption/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfhydryl Compounds/metabolism , Thiomalates , Time Factors , tert-Butylhydroperoxide , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL