Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
JACS Au ; 4(6): 2173-2187, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38938803

ABSTRACT

Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates. The plate reactors can seal high pressures produced by organic solvents by vertically stacking multiple reactor plates, leading to a compact and modular system capable of performing 240 reactions per experiment. Using this setup, we screened solvent mixtures and catalyst loadings for hydrogen-free RCF using 50 mg poplar and 0.5 mL reaction solvent. The system of 1:1 isopropanol/methanol showed optimal monomer yields and selectivity to 4-propyl substituted monomers, and validation reactions using 75 mL batch reactors produced identical monomer yields. To accommodate the low material loadings, we then developed a workup procedure for parallel filtration, washing, and drying of samples and a 1H nuclear magnetic resonance spectroscopy method to measure the RCF oil yield without performing liquid-liquid extraction. As a demonstration of this experimental pipeline, 50 unique switchgrass samples were screened in RCF reactions in the HTP-RCF system, revealing a wide range of monomer yields (21-36%), S/G ratios (0.41-0.93), and oil yields (40-75%). These results were successfully validated by repeating RCF reactions in 75 mL batch reactors for a subset of samples. We anticipate that this approach can be used to rapidly screen substrates, catalysts, and reaction conditions in high-pressure batch reactions with higher throughput than standard batch reactors.

2.
Science ; 378(6616): 207-211, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227984

ABSTRACT

Mixed plastics waste represents an abundant and largely untapped feedstock for the production of valuable products. The chemical diversity and complexity of these materials, however, present major barriers to realizing this opportunity. In this work, we show that metal-catalyzed autoxidation depolymerizes comingled polymers into a mixture of oxygenated small molecules that are advantaged substrates for biological conversion. We engineer a robust soil bacterium, Pseudomonas putida, to funnel these oxygenated compounds into a single exemplary chemical product, either ß-ketoadipate or polyhydroxyalkanoates. This hybrid process establishes a strategy for the selective conversion of mixed plastics waste into useful chemical products.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Oxidation-Reduction , Plastics , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Soil
3.
ChemSusChem ; 13(17): 4495-4509, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32246557

ABSTRACT

Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.

4.
Science ; 358(6368): 1307-1310, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29217572

ABSTRACT

Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 ± 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

SELECTION OF CITATIONS
SEARCH DETAIL