Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Am Chem Soc ; 144(43): 19849-19860, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36265017

ABSTRACT

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO2 adsorbents, although their stability to SO2─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO2 on the stability and CO2 capture performance of dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO2 breakthrough experiments and CO2 isobar measurements, we find that the material retains 91% of its CO2 capacity after saturation with a wet simulated flue gas containing representative levels of CO2 and SO2, highlighting the robustness of this framework to SO2 under realistic CO2 capture conditions. Initial SO2 cycling experiments suggest dmpn-Mg2(dobpdc) may achieve a stable operating capacity in the presence of SO2 after initial passivation. Evaluation of several other diamine-Mg2(dobpdc) variants reveals that those with primary,primary (1°,1°) diamines, including dmpn-Mg2(dobpdc), are more robust to humid SO2 than those featuring primary,secondary (1°,2°) or primary,tertiary (1°,3°) diamines. Based on the solid-state 15N NMR spectra and density functional theory calculations, we find that under humid conditions, SO2 reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg2(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO2 reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO2 capture applications.


Subject(s)
Diamines , Sulfur Dioxide , Carbon Dioxide , Amines , Carbon
2.
J Phys Chem A ; 123(17): 3863-3875, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30952191

ABSTRACT

The characterization of specific phonon modes and exciton states that lead to efficient singlet fission (SF) may be instrumental in the design of the next generation of high-efficiency photovoltaic devices. To this end, we analyze the absolute resonance Raman (RR) cross sections for tetracene (Tc) both as a monomer in solution and as a crystalline solid in an aqueous suspension of nanocrystals. For both systems, a time-dependent wavepacket model is developed that is consistent with the absolute RR cross sections, the magnitude of the absorption cross sections, and the vibronic line shapes of the fluorescence. In the monomer, the intramolecular reorganization energy is between 1500 and 1800 cm-1 and the solvent reorganization energy is 70 cm-1. In nanocrystals, the total reorganization is diminished to less than 600 cm-1. The lowest energy exciton has an estimated intramolecular reorganization energy between 300 and 500 cm-1 while intermolecular librational phonons have a reorganization energy of about 130 cm-1. The diminished reorganization energy of the nanocrystal is interpreted in the context of the delocalization of the band-edge exciton onto about ∼7 molecules. When electron and electron-hole correlations are included within many-body perturbation theory, the polarized absorption spectra of crystalline Tc are calculated and found to be in agreement with experiment. The low-lying exciton states and optically active phonons that contribute to the polarized crystal absorption are identified. The likely role of coherent exciton phonon evolution in the SF process is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL