Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Annu Rev Immunol ; 42(1): 259-288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277692

ABSTRACT

Gastrointestinal nematode (GIN) infection has applied significant evolutionary pressure to the mammalian immune system and remains a global economic and human health burden. Upon infection, type 2 immune sentinels activate a common antihelminth response that mobilizes and remodels the intestinal tissue for effector function; however, there is growing appreciation of the impact GIN infection also has on the distal tissue immune state. Indeed, this effect is observed even in tissues through which GINs never transit. This review highlights how GIN infection modulates systemic immunity through (a) induction of host resistance and tolerance responses, (b) secretion of immunomodulatory products, and (c) interaction with the intestinal microbiome. It also discusses the direct consequences that changes to distal tissue immunity can have for concurrent and subsequent infection, chronic noncommunicable diseases, and vaccination efficacy.


Subject(s)
Gastrointestinal Microbiome , Nematoda , Nematode Infections , Animals , Humans , Nematode Infections/immunology , Nematoda/immunology , Nematoda/physiology , Gastrointestinal Microbiome/immunology , Immunomodulation , Host-Parasite Interactions/immunology , Intestinal Diseases, Parasitic/immunology , Immune Tolerance , Gastrointestinal Tract/immunology , Gastrointestinal Tract/parasitology
2.
Proc Natl Acad Sci U S A ; 117(30): 17913-17923, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32651273

ABSTRACT

Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.


Subject(s)
Chemoreceptor Cells/physiology , Host-Parasite Interactions , Nematoda/physiology , Nematode Infections/etiology , Skin/parasitology , Animals , Behavior, Animal , Carbon Dioxide , Humans , Life Cycle Stages , Odorants , Olfactory Receptor Neurons/physiology , Strongyloides stercoralis/pathogenicity , Strongyloides stercoralis/physiology , Temperature
3.
BMC Biol ; 19(1): 221, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620172

ABSTRACT

BACKGROUND: Skin-penetrating nematodes of the genus Strongyloides infect over 600 million people, posing a major global health burden. Their life cycle includes both a parasitic and free-living generation. During the parasitic generation, infective third-stage larvae (iL3s) actively engage in host seeking. During the free-living generation, the nematodes develop and reproduce on host feces. At different points during their life cycle, Strongyloides species encounter a wide variety of host-associated and environmental bacteria. However, the microbiome associated with Strongyloides species, and the behavioral and physiological interactions between Strongyloides species and bacteria, remain unclear. RESULTS: We first investigated the microbiome of the human parasite Strongyloides stercoralis using 16S-based amplicon sequencing. We found that S. stercoralis free-living adults have an associated microbiome consisting of specific fecal bacteria. We then investigated the behavioral responses of S. stercoralis and the closely related rat parasite Strongyloides ratti to an ecologically diverse panel of bacteria. We found that S. stercoralis and S. ratti showed similar responses to bacteria. The responses of both nematodes to bacteria varied dramatically across life stages: free-living adults were strongly attracted to most of the bacteria tested, while iL3s were attracted specifically to a narrow range of environmental bacteria. The behavioral responses to bacteria were dynamic, consisting of distinct short- and long-term behaviors. Finally, a comparison of the growth and reproduction of S. stercoralis free-living adults on different bacteria revealed that the bacterium Proteus mirabilis inhibits S. stercoralis egg hatching, and thereby greatly decreases parasite viability. CONCLUSIONS: Skin-penetrating nematodes encounter bacteria from various ecological niches throughout their life cycle. Our results demonstrate that bacteria function as key chemosensory cues for directing parasite movement in a life-stage-specific manner. Some bacterial genera may form essential associations with the nematodes, while others are detrimental and serve as a potential source of novel nematicides.


Subject(s)
Nematoda , Animals , Bacteria , Larva , Life Cycle Stages , Rats , Skin , Strongyloides ratti , Strongyloides stercoralis
4.
PLoS Pathog ; 13(10): e1006675, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29016680

ABSTRACT

Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites.


Subject(s)
Calmodulin-Binding Proteins/metabolism , Muscle Proteins/metabolism , Mutagenesis/genetics , Strongyloides ratti/genetics , Strongyloides stercoralis/genetics , Animals , Animals, Genetically Modified , Calmodulin-Binding Proteins/genetics , Genetic Engineering/methods , Humans , Muscle Proteins/genetics , Rats
5.
J Neurosci ; 35(2): 761-75, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25589769

ABSTRACT

The modulation of gamma power (25-90 Hz) is associated with attention and has been observed across species and brain areas. However, mechanisms that control these modulations are poorly understood. The midbrain spatial attention network in birds generates high-amplitude gamma oscillations in the local field potential that are thought to represent the highest priority location for attention. Here we explore, in midbrain slices from chickens, mechanisms that regulate the power of these oscillations, using high-resolution techniques including intracellular recordings from neurons targeted by calcium imaging. The results identify a specific subtype of neuron, expressing non-α7 nicotinic acetylcholine receptors, that directly drives inhibition in the gamma-generating circuit and switches the network into a primed state capable of producing high-amplitude oscillations. The special properties of this mechanism enable rapid, persistent changes in gamma power. The brain may employ this mechanism wherever rapid modulations of gamma power are critical to information processing.


Subject(s)
Attention , Cholinergic Neurons/physiology , Gamma Rhythm , Mesencephalon/physiology , Animals , Cells, Cultured , Chickens , Cholinergic Neurons/metabolism , Female , Male , Mesencephalon/cytology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
6.
J Exp Biol ; 219(Pt 24): 3861-3865, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27742893

ABSTRACT

Dopamine regulates reproduction in part by modulating neuronal activity within the hypothalamic-pituitary-gonadal (HPG) axis. Previous studies suggested numerous mechanisms by which dopamine exerts inhibitory control over the HPG axis, ultimately changing the levels of sex steroids that regulate reproductive behaviors. However, it is not known whether these mechanisms are conserved across vertebrate species. In particular, it is unknown whether mechanisms underlying dopaminergic control of reproduction are shared between mammals and teleost fish. In mammals, dopamine directly inhibits gonadotropin-releasing hormone (GnRH1) hypothalamic neurons, the gatekeepers for activation of the HPG axis. Here, we demonstrate, for the first time in teleost fish, dopaminergic control of GnRH1 neurons via direct dopamine type-2-like receptor (D2R)-mediated inhibition within the hypothalamus. These results suggest that direct dopaminergic control of GnRH1 neurons via interactions in the hypothalamus is not exclusive to tetrapod reproductive control, but is likely conserved across vertebrate species.


Subject(s)
Cichlids/physiology , Dopamine/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Female , Male , Neurons/drug effects , Preoptic Area/drug effects , Preoptic Area/enzymology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Sex Characteristics , Tyrosine 3-Monooxygenase/metabolism
7.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38778899

ABSTRACT

The Caenorhabditis RNA-seq Browser is an open-source Shiny web app that enables on-demand visualization and quantification of bulk RNA-sequencing data for five Caenorhabditis species: C. elegans , C. briggsae , C. brenneri , C. japonica , and C. remanei . The app is designed to allow researchers without previous coding experience to interactively explore publicly available Caenorhabditis RNA-sequencing data. Key app features include the ability to plot gene expression across life stages for user-specified gene sets, and modules for performing differential gene expression analyses. The Caenorhabditis RNA-seq Browser can be accessed online via shinyapps.io or can be installed locally in R from a GitHub repository.

8.
G3 (Bethesda) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839055

ABSTRACT

The skin-penetrating gastrointestinal parasitic nematode Strongyloides stercoralis causes strongyloidiasis, which is a neglected tropical disease that is associated with severe chronic illness and fatalities. Unlike other human-infective nematodes, S. stercoralis cycles through a single free-living generation and thus serves as a genetically tractable model organism for understanding the mechanisms that enable parasitism. Techniques such as CRISPR/Cas9-mediated mutagenesis and transgenesis are now routinely performed in S. stercoralis by introducing exogenous DNA into free-living adults and then screening their F1 progeny for transgenic or mutant larvae. However, transgenesis in S. stercoralis has been severely hindered by the inability to establish stable transgenic lines that can be propagated for multiple generations through a host; to date, studies of transgenic S. stercoralis have been limited to heterogeneous populations of transgenic F1 larvae. Here, we develop an efficient pipeline for the generation of stable transgenic lines in S. stercoralis. We also show that this approach can be used to efficiently generate stable transgenic lines in the rat-infective nematode Strongyloides ratti. The ability to generate stable transgenic lines circumvents the limitations of working with heterogeneous F1 populations, such as variable transgene expression and the inability to generate transgenics of all life stages. Our transgenesis approach will enable novel lines of inquiry into parasite biology, such as transgene-based comparisons between free-living and parasitic generations.

9.
Philos Trans R Soc Lond B Biol Sci ; 379(1894): 20230004, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38008122

ABSTRACT

The Strongyloides genus of parasitic nematodes have a fascinating life cycle and biology, but are also important pathogens of people and a World Health Organization-defined neglected tropical disease. Here, a community of Strongyloides researchers have posed thirteen major questions about Strongyloides biology and infection that sets a Strongyloides research agenda for the future. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.


Subject(s)
Life Cycle Stages , Strongyloides , Animals , Humans
10.
Curr Biol ; 32(10): 2206-2221.e6, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35483361

ABSTRACT

Soil-transmitted parasitic nematodes infect over one billion people and cause devastating morbidity worldwide. Many of these parasites have infective larvae that locate hosts using thermal cues. Here, we identify the thermosensory neurons of the human threadworm Strongyloides stercoralis and show that they display unique functional adaptations that enable the precise encoding of temperatures up to human body temperature. We demonstrate that experience-dependent thermal plasticity regulates the dynamic range of these neurons while preserving their ability to encode host-relevant temperatures. We describe a novel behavior in which infective larvae spontaneously reverse attraction to heat sources at sub-body temperatures and show that this behavior is mediated by rapid adaptation of the thermosensory neurons. Finally, we identify thermoreceptors that confer parasite-specific sensitivity to body heat. Our results pinpoint the parasite-specific neural adaptations that enable parasitic nematodes to target humans and provide the foundation for drug development to prevent human infection.


Subject(s)
Helminths , Nematoda , Strongyloides stercoralis , Animals , Caenorhabditis elegans , Hot Temperature , Humans , Larva/physiology , Nematoda/physiology , Strongyloides stercoralis/physiology , Thermoreceptors
11.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33914084

ABSTRACT

Advances in genomics techniques are expanding the range of nematode species that are amenable to transgenesis. Due to divergent codon usage biases across species, codon optimization is often a critical step for the successful expression of exogenous transgenes in nematodes. Platforms for generating DNA sequences codon-optimized for the free-living model nematode Caenorhabditis elegans are broadly available. However, until now such tools did not exist for non-Caenorhabditis nematodes. We therefore developed the Wild Worm Codon Adapter, a tool for rapid transgene codon optimization for expression in non-Caenorhabditis nematodes. The app includes built-in optimization for parasitic nematodes in the Strongyloides, Nippostrongylus, and Brugia genera as well as the predatory nematode Pristionchus pacificus. The app also supports custom optimization for any species using user-provided optimization rules. In addition, the app supports automated insertion of synthetic or native introns, as well as the analysis of codon bias in transgene and native sequences. Here, we describe this web-based tool and demonstrate how it may be used to analyze genome-wide codon bias in Strongyloides species.


Subject(s)
Magnoliopsida , Nematoda , Animals , Nematoda/genetics , Transgenes , Caenorhabditis elegans/genetics , Codon/genetics , Gene Transfer Techniques , Magnoliopsida/genetics
12.
G3 (Bethesda) ; 11(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33823530

ABSTRACT

Soil-transmitted gastrointestinal parasitic nematodes infect approximately 1 billion people worldwide, predominantly in low-resource communities. Skin-penetrating gastrointestinal nematodes in the genus Strongyloides are emerging as model systems for mechanistic studies of soil-transmitted helminths due to the growing availability of functional genomics tools for these species. To facilitate future genomics studies of Strongyloides species, we have designed a web-based application, the Strongyloides RNA-seq Browser, that provides an open source, user-friendly portal for accessing and analyzing Strongyloides genomic expression data. Specifically, the Strongyloides RNA-seq Browser takes advantage of alignment-free read mapping tools and R-based transcriptomics tools to re-analyze publicly available RNA sequencing datasets from four Strongyloides species: Strongyloides stercoralis, Strongyloides ratti, Strongyloides papillosus, and Strongyloides venezuelensis. This application permits on-demand exploration and quantification of gene expression across life stages without requiring previous coding experience. Here, we describe this interactive application and demonstrate how it may be used by nematode researchers to conduct a standard set of bioinformatics queries.


Subject(s)
Computational Biology , Strongyloides , Animals , Internet , RNA-Seq , Software , Strongyloides/genetics
13.
J Neurophysiol ; 102(5): 2880-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19741104

ABSTRACT

The generation of prolonged neuronal activity depends on the maintenance of synaptic neurotransmitter pools. The astrocytic glutamate-glutamine cycle is a major mechanism for recycling the neurotransmitters GABA and glutamate. Here we tested the effect of disrupting the glutamate-glutamine cycle on two types of neuronal activity patterns in the thalamus: sleep-related spindles and epileptiform oscillations. In recording conditions believed to induce glutamine scarcity, epileptiform oscillations showed a progressive reduction in duration that was partially reversible by the application of exogenous glutamine (300 muM). Blocking uptake of glutamine into neurons with alpha-(methylamino) isobutyric acid (5 mM) caused a similar reduction in oscillation duration, as did blocking neuronal GABA synthesis with 3-mercaptoproprionic acid (10 muM). However, comparable manipulations did not affect sleep spindles. Together, these results support a crucial role for the glutamate-glutamine cycle in providing the neurotransmitters necessary for the generation of epileptiform activity and suggest potential therapeutic approaches that selectively reduce seizure activity but maintain normal neuronal activity.


Subject(s)
Action Potentials/physiology , Astrocytes/physiology , Glutamic Acid/metabolism , Glutamine/metabolism , Neurons/physiology , Thalamus/cytology , 3-Mercaptopropionic Acid/pharmacology , Action Potentials/drug effects , Analysis of Variance , Animals , Astrocytes/drug effects , Bicuculline/analogs & derivatives , Bicuculline/pharmacology , Convulsants/pharmacology , Female , Glutamic Acid/pharmacology , Glutamine/pharmacology , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
14.
Neurosci Lett ; 687: 290-303, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30336196

ABSTRACT

Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.


Subject(s)
Behavior/physiology , Helminths/parasitology , Odorants/prevention & control , Temperature , Thermosensing/physiology , Animals , Chemotaxis/physiology , Humans
15.
Int J Parasitol Drugs Drug Resist ; 8(3): 496-510, 2018 12.
Article in English | MEDLINE | ID: mdl-30396862

ABSTRACT

Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.


Subject(s)
Host-Parasite Interactions , Nematoda/physiology , Nematode Infections/transmission , Sensation , Soil/parasitology , Ancylostoma/physiology , Ancylostomiasis/parasitology , Ancylostomiasis/transmission , Animals , Gastrointestinal Diseases/parasitology , Humans , Larva/physiology , Necator/physiology , Nematode Infections/parasitology , Rats , Strongyloides ratti/physiology , Strongyloides stercoralis/physiology
16.
Curr Biol ; 28(14): 2338-2347.e6, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30017486

ABSTRACT

Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.


Subject(s)
Ancylostoma/physiology , Host-Seeking Behavior/physiology , Strongyloides stercoralis/physiology , Thermosensing/physiology , Ancylostoma/growth & development , Ancylostomiasis/parasitology , Animals , Humans , Larva/growth & development , Larva/physiology , Strongyloides stercoralis/growth & development , Strongyloidiasis/parasitology , Taxis Response/physiology
17.
PLoS One ; 9(1): e85865, 2014.
Article in English | MEDLINE | ID: mdl-24465755

ABSTRACT

Reciprocal inhibition between inhibitory projection neurons has been proposed as the most efficient circuit motif to achieve the flexible selection of one stimulus among competing alternatives. However, whether such a motif exists in networks that mediate selection is unclear. Here, we study the connectivity within the nucleus isthmi pars magnocellularis (Imc), a GABAergic nucleus that mediates competitive selection in the midbrain stimulus selection network. Using laser photostimulation of caged glutamate, we find that feedback inhibitory connectivity is global within the Imc. Unlike typical lateral inhibition in other circuits, intra-Imc inhibition remains functionally powerful over long distances. Anatomically, we observed long-range axonal projections and retrograde somatic labeling from focal injections of bi-directional tracers in the Imc, consistent with spatial reciprocity of intra-Imc inhibition. Together, the data indicate that spatially reciprocal inhibition of inhibition occurs throughout the Imc. Thus, the midbrain selection circuit possesses the most efficient circuit motif possible for fast, reliable, and flexible selection.


Subject(s)
Chickens/physiology , Inhibition, Psychological , Light , Mesencephalon/physiology , Nerve Net/physiology , Nerve Net/radiation effects , Neural Inhibition/radiation effects , Animals , Axons/physiology , Axons/radiation effects , Inhibitory Postsynaptic Potentials/radiation effects , Mesencephalon/radiation effects , Neural Inhibition/physiology , Neurons/physiology , Neurons/radiation effects
18.
Nat Neurosci ; 14(9): 1167-73, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21857658

ABSTRACT

Cortico-thalamo-cortical circuits mediate sensation and generate neural network oscillations associated with slow-wave sleep and various epilepsies. Cortical input to sensory thalamus is thought to mainly evoke feed-forward synaptic inhibition of thalamocortical (TC) cells via reticular thalamic nucleus (nRT) neurons, especially during oscillations. This relies on a stronger synaptic strength in the cortico-nRT pathway than in the cortico-TC pathway, allowing the feed-forward inhibition of TC cells to overcome direct cortico-TC excitation. We found a systemic and specific reduction in strength in GluA4-deficient (Gria4(-/-)) mice of one excitatory synapse of the rhythmogenic cortico-thalamo-cortical system, the cortico-nRT projection, and observed that the oscillations could still be initiated by cortical inputs via the cortico-TC-nRT-TC pathway. These results reveal a previously unknown mode of cortico-thalamo-cortical transmission, bypassing direct cortico-nRT excitation, and describe a mechanism for pathological oscillation generation. This mode could be active under other circumstances, representing a previously unknown channel of cortico-thalamo-cortical information processing.


Subject(s)
Cerebral Cortex/physiopathology , Epilepsy, Absence/pathology , Receptors, AMPA/deficiency , Thalamus/physiopathology , Animals , Animals, Newborn , Biophysics , Channelrhodopsins , Disease Models, Animal , Electric Stimulation , Electroencephalography , Epilepsy, Absence/genetics , Excitatory Postsynaptic Potentials/genetics , GABA Antagonists/pharmacology , In Vitro Techniques , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways/physiopathology , Neurons/physiology , Organophosphorus Compounds/pharmacology , Patch-Clamp Techniques/methods , Picrotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL