Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Immunol ; 42(5): 975-985, 2022 07.
Article in English | MEDLINE | ID: mdl-35338423

ABSTRACT

BACKGROUND: Autosomal recessive (AR) complete IRF8 deficiency is a rare severe inborn error of immunity underlying an absence of blood myeloid mononuclear cells, intracerebral calcifications, and multiple infections. Only three unrelated patients have been reported. MATERIALS AND METHODS: We studied an Argentinian child with multiple infectious diseases and severe pulmonary alveolar proteinosis (PAP). We performed whole-exome sequencing (WES) and characterized his condition by genetic, immunological, and clinical means. RESULTS: The patient was born and lived in Argentina. He had a history of viral pulmonary diseases, disseminated disease due to bacillus Calmette-Guérin (BCG), PAP, and cerebral calcifications. He died at the age of 10 months from refractory PAP. WES identified two compound heterozygous variants in IRF8: c.55del and p.R111*. In an overexpression system, the p.R111* cDNA was loss-of-expression, whereas the c.55del cDNA yielded a protein with a slightly lower molecular weight than the wild-type protein. The mutagenesis of methionine residues downstream from c.55del revealed a re-initiation of translation. However, both variants were loss-of-function in a luciferase assay, suggesting that the patient had AR complete IRF8 deficiency. The patient had no blood monocytes or dendritic cells, associated with neutrophilia, and normal counts of NK and other lymphoid cell subsets. CONCLUSION: We describe the fourth patient with AR complete IRF8 deficiency. This diagnosis should be considered in children with PAP, which is probably due to the defective development or function of alveolar macrophages.


Subject(s)
Communicable Diseases , Pulmonary Alveolar Proteinosis , Child , DNA, Complementary , Humans , Infant , Interferon Regulatory Factors/genetics , Male , Monocytes , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/genetics
2.
Front Immunol ; 13: 832306, 2022.
Article in English | MEDLINE | ID: mdl-36091026

ABSTRACT

Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1ß) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1ß) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1ß is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1ß processing in these cells. We found that although caspase-1 is required for IL-1ß secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1ß processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1ß secretion.


Subject(s)
Autophagy , Caspase 1 , Interleukin-1beta , Neutrophils , Serine Proteases , Autophagy/genetics , Autophagy/immunology , Caspase 1/genetics , Caspase 1/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Neutrophils/enzymology , Neutrophils/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Proteases/genetics , Serine Proteases/immunology
3.
Article in English | MEDLINE | ID: mdl-32944031

ABSTRACT

Interferon-stimulated gene 15 (ISG15) was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in the ISG15 gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF) ISG15 variants. This case highlights the role of ISG15 as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.

4.
Cell Rep ; 31(6): 107633, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402279

ABSTRACT

Most monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications. Herein, we describe five new patients with six novel ISG15 mutations presenting with skin lesions who were managed for dermatologic disease. Cellularly, we denote striking specificity to the IFN-I response, which was previously assumed to be universal. In peripheral blood, myeloid cells display the most robust IFN-I signatures. In the affected skin, IFN-I signaling is observed in the keratinocytes of the epidermis, endothelia, and the monocytes and macrophages of the dermis. These findings define the specific cells causing circulating and dermatologic inflammation and expand the clinical spectrum of ISG15 deficiency to dermatologic presentations as a third phenotype co-dominant to the infectious and neurologic manifestations.


Subject(s)
Cytokines/deficiency , Interferon Type I/immunology , Skin/pathology , Ubiquitins/deficiency , Alleles , Case-Control Studies , Child , Child, Preschool , Cytokines/genetics , Cytokines/immunology , Dermatitis/genetics , Dermatitis/immunology , Dermatitis/pathology , Female , HEK293 Cells , Humans , Infant , Male , Mutation , Myeloid Cells/immunology , Myeloid Cells/pathology , Necrosis , Pedigree , Ubiquitins/genetics , Ubiquitins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL