Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28130548

ABSTRACT

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , High-Throughput Screening Assays/methods , Receptors, Adrenergic, beta-2/metabolism , Small Molecule Libraries/pharmacology , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/metabolism , Animals , Binding Sites/genetics , Binding, Competitive/drug effects , DNA/genetics , Humans , Ligands , Molecular Structure , Mutation , Receptors, Adrenergic, beta-2/genetics , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Spodoptera
2.
Genome Res ; 18(10): 1670-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18799693

ABSTRACT

We report the construction and analysis of a mouse gene trap mutant resource created in the C57BL/6N genetic background containing more than 350,000 sequence-tagged embryonic stem (ES) cell clones. We also demonstrate the ability of these ES cell clones to contribute to the germline and produce knockout mice. Each mutant clone is identified by a genomic sequence tag representing the exact insertion location, allowing accurate prediction of mutagenicity and enabling direct genotyping of mutant alleles. Mutations have been identified in more than 10,000 genes and show a bias toward the first intron. The trapped ES cell lines, which can be requested from the Texas A&M Institute for Genomic Medicine, are readily available to the scientific community.


Subject(s)
Embryonic Stem Cells/metabolism , Mutagenesis, Insertional , Animals , Blastocyst/metabolism , Cell Line , Chimera , Clone Cells , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Introns , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , MicroRNAs
SELECTION OF CITATIONS
SEARCH DETAIL