Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Small ; 10(20): 4207-12, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-24912807

ABSTRACT

Negative-tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self-assembled nanopatterning. BCP blends films consisting of end-functionalized low molecular weight poly(styrene-ran-methyl methacrylate) and polystyrene-block-Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end-functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self-assembled nanodomain formation facilitates single step, site-specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self-assembly approaches to produce device oriented laterally ordered nanopatterns.

2.
Opt Lett ; 38(9): 1573-5, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23632556

ABSTRACT

In this study, we fabricated a high-brightness AlGaInP light-emitting diode (LED) using the direct printing technique and dry etching. In general, wet etching is used for surface roughening to improve the light extraction of AlGaInP red LEDs. However, a structure fabricated by wet etching has limited height and shows a tiled cone shape after the etching process due to the AlGaInP crystal structure. These limitations reduce the light extraction of the LED. As a result, we fabricated a perfectly cone-shaped pattern with high aspect ratio using direct printing by etching to maximize the LED light extraction efficiency. Compared to the red LED with a wet-etched structure, the patterning enhanced the light output power by 12% without electrical degradation. This enhanced light output power was maintained even after the packaging process.

3.
Opt Express ; 20(10): 11423-32, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565762

ABSTRACT

SiNx-based photonic crystal (PhC) patterns were fabricated on the ITO electrode layer of a GaN-based light-emitting diode (LED) device on a patterned sapphire substrate (PSS) by a UV nanoimprint lithography process in order to improve the light extraction of the device. A three-dimensional finite-difference time-domain simulation confirmed that the light extraction of a GaN LED structure on a PSS is enhanced when SiNx PhC patterns are formed on the ITO top layer. From the I-V characteristics, the electrical properties of patterned LED devices with SiNx-based PhC were not degraded compared to the unpatterned LED device, since plasma etching of the p-GaN or the ITO layers was not involved in the patterning process. Additionally, the patterned LED devices with SiNx-based PhCs showed 19%-increased electroluminescence intensity compared with the unpatterned LED device at 445 nm wavelength when a 20 mA current is driven.

4.
Opt Lett ; 36(16): 3203-5, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21847208

ABSTRACT

Distributed antireflection (AR) layers with different composition ratios of ITO and SiO(2) formed on an ITO electrode of GaN-based LEDs provide substantial enhancement in light-extraction efficiency. By using the coradio frequency magnetron sputtering deposition, four 50 nm thick AR layers with graduated refractive indices were fabricated. The effect of the AR layers on enhancing the efficiency of the LED device was analyzed by electroluminescence (EL) and I-V measurements. As a result, the EL intensity of the LED device grown on the patterned sapphire substrate with AR layers was increased by up to 13% compared to the conventional patterned sapphire substrate-applied LED device without AR layers at a drive current of 20 mA. The AR layers on top of the LED device gradually changed the refractive indices between ITO (n=2.1) and air (n=1.0), which minimized the total internal reflection of generated light. And no degradation in the electrical characteristic of the LEDs was observed according to the I-V measurements.

5.
Nanotechnology ; 21(35): 355304, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20689168

ABSTRACT

In this study, a patterned ZnO nanorod array was formed on the ITO layer of GaN-based light-emitting diodes (LEDs), to increase the light extraction efficiency of the LED. The bi-layer imprinted resin pattern was used for selective growth of the ZnO nanorod array on the ITO layer. Compared to conventional LEDs grown on patterned sapphire substrate (PSS), the deposition of the blanket ZnO layer on the ITO layer increased the light extraction efficiency of the LED by about 10%. Further growth of the ZnO nanorod layer on the blanket ZnO layer increased the light extraction efficiency of the LED by about 23%. In the case that a patterned ZnO nanorod layer was formed on a blanket ZnO layer, the light extraction efficiency increased by about 34%. These enhancements of the device were caused by modulation of the refractive-index in ZnO layers and the surface roughening effects because of the unique design of the pattern, which was nanostructure-in-nanopattern, resulting in the formation of many escape cones on the LED surface.

6.
J Nanosci Nanotechnol ; 9(7): 4103-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19916415

ABSTRACT

A highly durable imprint template is essential for the industrialization of nanoimprint lithography (NIL). Conventionally, Si-based materials were used for the fabrication of imprint templates. However, their fabrication is very expensive and they can be easily damaged during repeated imprint processes due to their brittleness and poor mechanical properties. The Ni template has excellent mechanical strength and can be easily and cheaply duplicated by the electroforming process. It has the potential for application to the NIL process if its poor antistiction property, which causes serious detaching issues, is improved. In this study, thin Au and Ti layers were deposited on a Ni template and a thiol-based, hydrophobic, self-assembled monolayer (SAM) layer was stably formed on the Au coated Ni template. Thus, the antistiction property of the Ni template was drastically elevated. Using the prepolymer-based, thermal imprint process and the thiol-based, SAM-coated Ni template, sub-micron sized patterns were successfully formed on the Si substrate.

7.
J Nanosci Nanotechnol ; 9(7): 4194-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19916428

ABSTRACT

The formation of a residual layer under the imprinted patterns is commonly observed after the imprinting process. In order to utilize the imprinted patterns into the top-down process, the removal process of the residual layer using oxygen plasma is inevitable. However, the critical dimension of the imprinted patterns can be degraded during the residual layer removal process and this degradation becomes severer for smaller sized patterns. Zero residual layer imprinting therefore has advantages in nano-sized patterning. In this study, 70 nm-narrow polymer patterns with a height of 300 nm were successfully fabricated on a Si wafer without any residual layer using a high aspect ratio template and thin polymer resin layer, after which 70 nm-narrow Cr metal nanowires were formed on the Si wafer through the lift-off process.

8.
J Nanosci Nanotechnol ; 8(10): 5242-6, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19198430

ABSTRACT

Nanoimprint lithography (NIL) was adapted to fabricate two-dimensional (2-D) photonic crystal (PC) pattern on the p-GaN layer of InGaN/GaN multi quantum well light-emitting diodes (LEDs) structure to improve the light extraction efficiency. For the uniform transfer of the PC pattern, a bi-layer imprinting method with liquid phase resin was used. The p-GaN layer was patterned with a periodic array of holes by an inductively coupled plasma etching process, based on SiCl4/Ar plasmas. As a result, 2-D photonic crystal patterns with 144 nm, 200 nm and 347 nm diameter holes were uniformly formed on the p-GaN layer and the photoluminescence (PL) intensity of each patterned LED samples was increased by more than 2.6 times, as compared to that of the un-patterned LED sample.

9.
Nanoscale Res Lett ; 6(1): 578, 2011 Oct 31.
Article in English | MEDLINE | ID: mdl-22040200

ABSTRACT

A micro- and nanoscale complex structure made of a high refractive index polymer (n = 2.08) was formed on the ITO electrode layer of an edge-emitting type GaN blue light-emitting diode (LED), in order to improve the photon extraction efficiency by suppressing total internal reflection of photons. The nanoimprint lithography process was used to form the micro- and nanoscale complex structures, using a polymer resin with dispersed TiO2 nano-particles as an imprint resin. Plasma processing, such as reactive ion etching, was used to form the micro- and nano-scale complex structure; thus, plasma-induced damage to the LED device can be avoided. Due to the high refractive index polymeric micro- and nanostructure on the ITO layer, the electroluminescence emission was increased up to 20%, compared to an identical LED that was grown on a patterned sapphire substrate to improve photon extraction efficiency.

10.
Nanoscale Res Lett ; 6(1): 458, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21767390

ABSTRACT

UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

SELECTION OF CITATIONS
SEARCH DETAIL