Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 568(7750): 112-116, 2019 04.
Article in English | MEDLINE | ID: mdl-30918399

ABSTRACT

Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence1. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies1-3, and the results of early clinical trials suggest activity in multiple myeloma4. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low1,2,4-9. Unlike the mechanisms that result in complete and permanent antigen loss6,8,9, those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Leukemia/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape/immunology , 4-1BB Ligand/immunology , Animals , CD28 Antigens/immunology , Cytotoxicity, Immunologic , Female , Immunotherapy, Adoptive , Leukemia/pathology , Male , Mice , Mice, Inbred NOD , Neoplasm Recurrence, Local/immunology , T-Lymphocytes/cytology
2.
Mol Ther ; 30(6): 2199-2209, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35247584

ABSTRACT

The globin genes are archetypal tissue-specific genes that are silent in most tissues but for late-stage erythroblasts upon terminal erythroid differentiation. The transcriptional activation of the ß-globin gene is under the control of proximal and distal regulatory elements located on chromosome 11p15.4, including the ß-globin locus control region (LCR). The incorporation of selected LCR elements in lentiviral vectors encoding ß and ß-like globin genes has enabled successful genetic treatment of the ß-thalassemias and sickle cell disease. However, recent occurrences of benign clonal expansions in thalassemic patients and myelodysplastic syndrome in patients with sickle cell disease call attention to the non-erythroid functions of these powerful vectors. Here we demonstrate that lentivirally encoded LCR elements, in particular HS1 and HS2, can be activated in early hematopoietic cells including hematopoietic stem cells and myeloid progenitors. This activity is position-dependent and results in the transcriptional activation of a nearby reporter gene in these progenitor cell populations. We further show that flanking a globin vector with an insulator can effectively restrain this non-erythroid activity without impairing therapeutic globin expression. Globin lentiviral vectors harboring powerful LCR HS elements may thus expose to the risk of trans-activating cancer-related genes, which can be mitigated by a suitable insulator.


Subject(s)
Anemia, Sickle Cell , Globins , Anemia, Sickle Cell/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Globins/genetics , Hematopoietic Stem Cells/metabolism , Humans , beta-Globins/genetics , beta-Globins/metabolism
3.
Br J Haematol ; 192(2): 395-404, 2021 01.
Article in English | MEDLINE | ID: mdl-33216968

ABSTRACT

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of ß-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δß0 -thalassaemia, is able to completely rescue the ß-major thalassaemia phenotype caused by the ß0 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from ß0 -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous ß0 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of ß-thalassaemia irrespective of the ß-globin gene (HBB) mutations.


Subject(s)
Fetal Hemoglobin/genetics , Gene Editing/methods , Hematopoietic Stem Cells/metabolism , beta-Thalassemia/genetics , CRISPR-Cas Systems , Cells, Cultured , HEK293 Cells , Humans , K562 Cells , Up-Regulation
4.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Article in English | MEDLINE | ID: mdl-35941192

ABSTRACT

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Subject(s)
Induced Pluripotent Stem Cells , Receptors, Chimeric Antigen , Mice , Animals , Humans , T-Lymphocytes , Induced Pluripotent Stem Cells/metabolism , Receptors, Antigen, T-Cell , CD8 Antigens/metabolism , Receptors, Chimeric Antigen/metabolism
5.
Nat Med ; 28(1): 63-70, 2022 01.
Article in English | MEDLINE | ID: mdl-34980909

ABSTRACT

ß-Thalassemias are inherited anemias that are caused by the absent or insufficient production of the ß chain of hemoglobin. Here we report 6-8-year follow-up of four adult patients with transfusion-dependent ß-thalassemia who were infused with autologous CD34+ cells transduced with the TNS9.3.55 lentiviral globin vector after reduced-intensity conditioning (RIC) in a phase 1 clinical trial ( NCT01639690) . Patients were monitored for insertional mutagenesis and the generation of a replication-competent lentivirus (safety and tolerability of the infusion product after RIC-primary endpoint) and engraftment of genetically modified autologous CD34+ cells, expression of the transduced ß-globin gene and post-transplant transfusion requirements (efficacy-secondary endpoint). No unexpected safety issues occurred during conditioning and cell product infusion. Hematopoietic gene marking was very stable but low, reducing transfusion requirements in two patients, albeit not achieving transfusion independence. Our findings suggest that non-myeloablative conditioning can achieve durable stem cell engraftment but underscore a minimum CD34+ cell transduction requirement for effective therapy. Moderate clonal expansions were associated with integrations near cancer-related genes, suggestive of non-erythroid activity of globin vectors in stem/progenitor cells. These correlative findings highlight the necessity of cautiously monitoring patients harboring globin vectors.


Subject(s)
Genetic Therapy/methods , Genetic Vectors , Globins/genetics , Lentivirus/genetics , Transplantation Conditioning/methods , beta-Thalassemia/therapy , Adolescent , Adult , Antigens, CD34/genetics , Blood Transfusion , Female , Humans , Male , Transduction, Genetic , Young Adult
6.
Haematologica ; 96(5): 767-70, 2011 May.
Article in English | MEDLINE | ID: mdl-21273267

ABSTRACT

The persistence of high fetal hemoglobin level in adults may ameliorate the clinical phenotype of beta-thalassemia and sickle cell anemia. Several genetic variants responsible for hereditary persistence of fetal hemoglobin, linked and not linked to the beta globin gene cluster, have been identified in patients and in normal individuals. Monoallelic loss of KLF1, a gene with a key role in erythropoiesis, has been recently reported to be responsible for persistence of high levels of fetal hemoglobin. In a Sardinian family, high levels of HbF (22.1-30.9%) were present only in compound heterozygotes for the S270X nonsense and K332Q missense mutations, while the isolated S270X nonsense (haploinsufficiency) or K332Q missense mutation were associated with normal HbF levels (<1.5%). Functionally, the K332Q Klf1 mutation impairs binding to the BCl11A gene and activation of the γ- and ß-globin promoters. Moreover, we report for the first time the association of KLF1 mutations with very high levels of zinc protoporphyrin.


Subject(s)
Erythrocytes/metabolism , Fetal Hemoglobin/metabolism , Kruppel-Like Transcription Factors/genetics , Mutation , Protoporphyrins/metabolism , Adult , Base Sequence , DNA Mutational Analysis , Family Health , Female , Fluorometry , HEK293 Cells , Heterozygote , Humans , Italy , Male , Middle Aged , Pedigree , Polymerase Chain Reaction
7.
Nat Med ; 25(1): 82-88, 2019 01.
Article in English | MEDLINE | ID: mdl-30559421

ABSTRACT

Chimeric antigen receptors (CARs) are synthetic receptors that target and reprogram T cells to acquire augmented antitumor properties1. CD19-specific CARs that comprise CD28 and CD3ζ signaling motifs2 have induced remarkable responses in patients with refractory leukemia3-5 and lymphoma6 and were recently approved by the US Food and Drug Administration7. These CARs program highly performing effector functions that mediate potent tumor elimination4,8 despite the limited persistence they confer on T cells3-6,8. Extending their functional persistence without compromising their potency should improve current CAR therapies. Strong T cell activation drives exhaustion9,10, which may be accentuated by the redundancy of CD28 and CD3ζ signaling11,12 as well as the spatiotemporal constraints imparted by the structure of second-generation CARs2. Thus, we hypothesized that calibrating the activation potential of CD28-based CARs would differentially reprogram T cell function and differentiation. Here, we show that CARs encoding a single immunoreceptor tyrosine-based activation motif direct T cells to different fates by balancing effector and memory programs, thereby yielding CAR designs with enhanced therapeutic profiles.


Subject(s)
Cell Lineage , Immunotherapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Animals , Calibration , Cell Line , Male , Mice , Protein Domains , Receptors, Antigen, T-Cell/chemistry
8.
Nat Med ; 25(3): 530, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30692700

ABSTRACT

In the version of this article originally published, there was an error in the legend for Extended Data Fig. 7. The legend for panel f was originally: "f, FACS analysis of IL7R-, CD62L- and CD45RA- expression on TRAC-1928ζ and TRAC-1XX CAR T cells at day 63 post CAR infusion (representative for at least n = 3 mice per group in one independent experiment)." The legend should have been: "f, FACS analysis of IL7R+, CD62L+ and CD45RA+ expression on TRAC-1928ζ and TRAC-1XX CAR T cells at day 63 post CAR infusion (representative for at least n = 3 mice per group in one independent experiment)." The error has been corrected in the HTML and PDF versions of this article.

10.
Hematol Oncol Clin North Am ; 32(2): 329-342, 2018 04.
Article in English | MEDLINE | ID: mdl-29458735

ABSTRACT

The ß-thalassemias are inherited blood disorders that result from insufficient production of the ß-chain of hemoglobin. More than 200 different mutations have been identified. ß-Thalassemia major requires life-long transfusions. The only cure for severe ß-thalassemia is to provide patients with hematopoietic stem cells. Globin gene therapy promises a curative autologous stem cell transplantation without the immunologic complications of allogeneic transplantation. The future directions of gene therapy include enhancement of lentiviral vector-based approaches, fine tuning of the conditioning regimen, and the design of safer vectors. Progress in genetic engineering bodes well for finding a cure for severe globin disorders.


Subject(s)
Gene Editing , Genetic Therapy , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy , CRISPR-Cas Systems , Gene Editing/methods , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL