Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Environ Res ; 195: 110753, 2021 04.
Article in English | MEDLINE | ID: mdl-33485911

ABSTRACT

The deep-sea is the biggest ecosystem in the world and despite the extreme conditions that characterize it, is highly biodiverse and complex. Deep-sea mining has been foreseen as a potential and concerning new stressor, and among the deep-sea mining associated stressors, sediment plumes, likely to be released into the water column as a side effect of mining, can reach habitats within a radius of more than a hundred kilometers. The present study examined the effects of suspended sediments of different grain sizes (63-125 µm, 125-250 µm and 250-500 µm) in the model species Mytilus galloprovincialis, at 4 bar, as a proxy to address the potential effects of sediment plumes, in the water column, with different grain sizes under high pressure conditions. Functional (filtration rate - FR), biochemical (catalase - CAT, glutathione s-transferase - GST, lipid peroxidation - LPO) and molecular (gene expression of [actin (ACTN), glutathione S-transferase alpha (GSTA), superoxide dismutase 2 (SOD2), catalase (CAT), heat shock protein 60 (HSP60), cytochrome c oxidase (COI) and DNA mismatch repair protein (MSH6)]) endpoints were studied in juvenile organisms. The FR decreased significantly for all tested grain size ranges, with a more severe effect for the particles with a diameter between 63 and 125 µm. In addition to the FR, significant changes were also observed for all tested biomarkers. Gene expression was significantly downregulated for CAT and ACTN. Overall, this study demonstrated that the smaller sized particles are the ones leading to more severe effects. Given their high dispersion potential and longer suspension periods under mining operation scenarios, particular attention should be given to the release of sediment plumes that may affect deep-sea environments and the water column. It is, therefore, vital to create standards and guidelines for sustainable mining practices.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Biomarkers , Catalase/genetics , Ecosystem , Mining , Mytilus/genetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Monit Assess ; 194(1): 11, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34877637

ABSTRACT

Among the environmental emerging concern rare earth elements, lanthanum (La) is one of the most common and reactive. Lanthanum is widely used in numerous modern technologies and applications, and its intense usage results in increasing discharges into the environment, with potentially deleterious consequences to earthlings. Therefore, we exposed the important food resource and powerful monitoring tool Manila clam to two environmentally relevant concentrations of La (0.3 µg L-1 and 0.9 µg L-1) for 6 days, through water, to assess the bioaccumulation pattern in the gills, digestive gland, and remaining body. The La bioaccumulation was measured after 1 (T1), 2 (T2), and 6 (T6) days of exposure. Lanthanum was bioaccumulated after 2 days, and the levels increased in all tissues in a dose-dependent manner. When exposed to 0.3 µg L-1, the enrichment factor pattern was gills > body > digestive gland. However, when exposed to 0.9 µg L-1, the pattern appears to change to gills > digestive gland > body. Tissue portioning appears to be linked with exposed concentration: In higher exposure levels, digestive gland seems to gain importance, probably associated with detoxification mechanisms. Here, we describe for the first time La bioaccumulation in these different tissues in a bivalve species. Future studies dealing with the bioaccumulation and availability of La should connect them with additional water parameters (such as temperature, pH, and major cations).


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Environmental Monitoring , Gills/chemistry , Lanthanum/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Res ; 191: 110051, 2020 12.
Article in English | MEDLINE | ID: mdl-32818498

ABSTRACT

Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 µg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.


Subject(s)
Anguilla , Animals , Eels , Europe , Humans , Lanthanum/toxicity , Temperature
4.
Environ Monit Assess ; 191(9): 579, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31435745

ABSTRACT

The spatial distribution of Pt and Rh was assessed in Tagus estuary and their sources discussed. Both elements were analysed in superficial sediment samples (n = 72) by adsorptive cathodic stripping voltammetry. Concentrations varied within the following ranges: 0.18-5.1 ng Pt g-1 and 0.02-1.5 ng Rh g-1. Four distinct areas were established: "reference"; waste- and pluvial water discharge; motorway bridges and industrialised areas. The calculated reference median concentrations were 0.55 ng Pt g-1 and 0.27 ng Rh g-1. Linear relationships were found between Pt and Al, Fe and LOI, whereas Rh depicted scattered patterns. The highest concentrations were found nearby industrialised areas and a motorway bridge, corresponding to the enrichment of 10 and 6 times the background of Pt and Rh, respectively. The main sources of contamination to the Tagus estuary derived from historical and present industrial activities and from automotive catalytic converters. Large variations of Pt/Rh ratio (0.48-39) point to different sources, reactivity and dilution effects.


Subject(s)
Environmental Monitoring , Platinum/analysis , Rhodium/analysis , Water Pollutants, Chemical/analysis , Adsorption , Catalysis , Estuaries , Europe , Geologic Sediments/analysis , Palladium/analysis
5.
Cell Mol Neurobiol ; 35(1): 33-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25274046

ABSTRACT

The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide ((•)NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived (•)NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-(•)NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical-chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of (•)NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how (•)NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced (•)NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.


Subject(s)
Aging/metabolism , Brain/metabolism , Nitric Oxide/metabolism , Animals , Central Nervous System/metabolism , Electrodes, Implanted , Male , Memory/physiology , Motor Activity/physiology , Rats , Rats, Inbred F344
6.
Environ Sci Technol ; 49(11): 6545-53, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25923357

ABSTRACT

Catalytic converters in automobiles have significantly increased the input of platinum group elements (PGE) to the environment, and their coupled geochemical behavior has been proposed. To check this hypothesis, Pt and Os concentrations and (187)Os/(188)Os ratios were determined in sediment cores and interstitial waters from the Tagus Estuary (SW Europe) affected by different traffic pressure. Platinum concentration in surface sediments nearby the high traffic zone (up to 40 ng g(-1)) indicated severe contamination. Although lower than Pt, Os enrichment was also observed in surface sediments, with lower (187)Os/(188)Os ratios than in deeper layers. Dissolved Pt and Os in interstitial waters, 0.1-0.7 pg g(-1) and 0.03-0.10 pg g(-1), respectively, were higher than in typical uncontaminated waters. Results indicate two sources of Pt and Os into the Tagus Estuary salt marshes: a regional input associated with industrial activities, fossil fuel combustions, and regional traffic and a local source linked to nearby traffic density emissions. Estimations of Os and Pt released by catalytic converters support this two-source model. Differences in geochemical reactivity and range of dispersion from their sources lead to a decoupled behavior of Os and Pt, questioning the use of Os isotopes as proxies of PGE sources to the environment.


Subject(s)
Environmental Monitoring , Estuaries , Geologic Sediments/chemistry , Osmium/analysis , Platinum/analysis , Catalysis , Europe , Geography , Isotopes , Limit of Detection , Water Movements
7.
Data Brief ; 53: 110145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38370918

ABSTRACT

The MONITOOL project (2017-2023) was carried out to describe the relationships between total dissolved and labile metal concentrations measured in spot water samples and in concurrently deployed Diffusive Gradients in Thin-films (DGTs) passive samplers, respectively. The ultimate aim was to adapt existing marine metal Environmental Quality Standards (EQS marine water) for DGTs, enabling their use in the context of the European Directives (the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD)). Time-integrated metal concentrations provided by DGTs, representing several days, are an advantage compared to conventional spot sampling, especially in highly dynamic systems, such as transitional waters. Hence, the MONITOOL project aimed to provide a robust database of dissolved and labile metal concentrations in transitional and coastal waters, based upon co-deployments of DGTs and collection of spot water samples at several sampling sites (England, France, Ireland, Italy, Northern Ireland, Portugal, Scotland and Spain), followed subsequently by DGT and water metal analysis. Samplings were carried out in 2018 and 2022, following agreed protocols developed in the framework of the project. The MONITOOL dataset includes metal concentrations from DGTs, measured with Inductively Coupled Plasma Mass Spectrometry (ICP-MS: Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) and in concurrently collected spot water samples by ICP-MS (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and Anodic/Cathodic Stripping Voltammetry (ASV/CSV: Cd, Pb, Ni). Moreover, data on seawater physical-chemical parameters (salinity, temperature, dissolved oxygen, pH, turbidity, total suspended solids, dissolved organic carbon, and total organic carbon) is provided. This database presents the results obtained using, concurrently, different forms of sampling and analytical techniques, enabling the comparison of the results obtained by these strategies and allowing the adaptation of EQS in marine water (EQS marine water) to DGTs (EQS DGT), in the context of the WFD. Moreover, due to the large number of sampling sites, it could also be used for other types of research, such as those dealing with metal speciation or the determination of baseline levels.

8.
Sci Total Environ ; 901: 166050, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37543340

ABSTRACT

The accumulation of microplastics (MP) by marine species of ecological and commercial interest represents a major concern, particularly for those present in human diet. This study analysed the accumulation of MP in three species of coastal pelagic fish with high commercial value, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus) and horse mackerel (Trachurus trachurus), collected along the Western coast of the Iberian Peninsula. The gastrointestinal tract (GT), gills and muscle were analysed and a total of 504 particles were observed. MP were found in all target tissues of the studied species. Horse mackerel exhibited significantly higher concentrations of microplastics in GT compared to other tissues. On the other hand, anchovies and sardines had significantly lower microplastic concentrations in their muscle tissue. The accumulation of microplastics in the gills showed a significant difference between species, with anchovy having significantly higher concentrations compared to horse mackerel. Horse mackerel had the highest percentage of individuals with microplastics in their GT (92 %), followed by sardine (75 %) and anchovy (50 %). Horse mackerel was also the species that registered the highest percentage of individuals with particles in the muscle (63 %), followed by anchovy (40 %) and finally sardine (39 %). MP in the gills of European sardines and anchovies were similar to those found in water samples. The majority of MP found measured <0.5 mm and were blue fibers. Furthermore, the presence of MP in the GT showed a weak and moderated significant negative correlation with the Fulton Condition Index in horse mackerel and European sardine. Our study confirms the ubiquitous extent of MP contamination in the ocean and provides baseline evidence of MP tissue distribution in three small pelagic fish species with distinct feeding behaviour, while correlating this with the presence of MP in water. Importantly, the results of this study contribute to improve the understanding of biological partitioning of MP in open sea fish species with high commercial relevance, and the potential deleterious effects of our increasingly MP contaminated world.

9.
Mar Environ Res ; 190: 106064, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344267

ABSTRACT

Mola mola is the largest teleost inhabiting our ocean and the presence of microplastics (MP) in this flagship species was, before this study, never described. Thus, this investigation focused on analysing MP ingestion in 53 ocean giant sunfish in the Northeast Atlantic Ocean. A total of 116 MP were found in 79% of the specimens, with a median of 1 MP.ind-1, ranging from 0 to 11 MP.ind-1. Seasonal differences were observed, with more fibers registered in specimens caught in autumn. Among the different size classes observed, the smallest category (<300 µm) was the most frequent (43%). Blue (43%) was the most prevalent color, followed by green (29%) and black (10%). The majority of fragments were styrene acrylic copolymer (53%), while most fibers were rayon (78%). These findings emphasize that the ocean sunfish population crossing the southern waters of Portugal is exposed to microplastic pollution and highlight the need for effective management policies to address plastic pollution in marine ecosystems.


Subject(s)
Tetraodontiformes , Water Pollutants, Chemical , Animals , Plastics , Microplastics , Ecosystem , Atlantic Ocean , Eating , Environmental Monitoring
10.
Mar Pollut Bull ; 192: 114990, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167661

ABSTRACT

Platinum Group Elements (PGEs) are contaminants of emerging environmental concern considering their continuous increasing use and subsequent release in the environment. While recent field studies provided PGE levels in seawater, scarce knowledge still exists regarding PGE contamination in marine organisms, especially for rhodium (Rh). Water, macroalgae and mussels were sampled along two representative urbanized estuarine systems and adjacent coastal areas (Douro and Ave estuaries, Portugal). Rhodium and platinum (Pt) concentrations were quantified through both stripping voltammetry and mass spectrometry in collected samples. Spatial mapping of PGE contamination was, to a certain extent, correlated with proxies of urban effluents. The use of Pt/Rh ratios reflected the dominant influence of PGE traffic emissions along the Douro and inputs from various sources (including industries) on the Ave Estuary. Macroalgae and mussels PGE concentrations reflected urban pressure, amplifying environmental signals, and supporting their relevant use as bioindicators of PGE contamination in estuarine/coastal systems.


Subject(s)
Environmental Monitoring , Rhodium , Environmental Monitoring/methods , Portugal , Estuaries , Platinum/analysis , Water/analysis , Rhodium/analysis
11.
Sci Total Environ ; 876: 162557, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36898539

ABSTRACT

Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring , Cosmetics/analysis , Pharmaceutical Preparations
12.
Environ Sci Pollut Res Int ; 30(48): 105675-105684, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37715912

ABSTRACT

With the growing interest to exploit mineral resources in the deep-sea, there is the need to establish guidelines and frameworks to support hazard and risk assessment schemes. The present study used a subtidal species of filter-feeding bivalve, the clam Spisula solida, as a proxy to better understand the impacts of sediment plumes in marine organisms under hyperbaric conditions. Four concentrations of suspended sediments (0 g/L, 1 g/L, 2 g/L, and 4 g/L) were used in a mixture with different grain sizes at 4 Bar for 96 h. Functional (filtration rate-FR) and biochemical endpoints (catalase-CAT, glutathione s-transferase-GST, and lipid peroxidation-LPO) were analyzed in the gonads, digestive gland, and gills of S. solida after a 96-h exposure at 4 Bar (the natural limit of the species vertical distribution). The FR showed a decreasing trend with the increasing sediment concentrations (significant effects at 2 and 4 g/L). Additionally, significant changes were observed for some of the tested oxidative stress biomarkers, which were concentration and tissue-dependent, i.e., CAT activity was significantly elevated in gills (1 g/L treatment), and GST was decreased in digestive gland (1 g/L treatment). Overall, the results show that suspended sediments, at 2 and 4 g/L, have negative functional impacts in the bivalve S. solida providing additional insights to improve hazard assessment of deep-sea mining. These findings represent a step forward to ensure the mitigation of the potential negative effects of deep-sea resource exploitation.


Subject(s)
Bivalvia , Spisula , Water Pollutants, Chemical , Animals , Spisula/metabolism , Catalase/metabolism , Oxidative Stress , Digestion , Lipid Peroxidation , Gills/metabolism , Water Pollutants, Chemical/chemistry , Biomarkers/metabolism , Glutathione Transferase/metabolism
13.
Sci Total Environ ; 900: 165872, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517731

ABSTRACT

Spatial patterns and temporal trends of the butyltin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) were investigated in a set of sediment samples collected along the SW Portuguese continental shelf. This region did not reach the Good Environmental Status (GES) in accordance with the Marine Strategy Framework Directive (MSFD) during a first evaluation carried out in 2012. Overall, MBT and DBT were the predominant organotin species detected, but high concentrations of TBT were found in and around disposal sites for dredge sludge derived from the dredging in navigation channels, harbours, and shipyard facilities of the Tagus and Sado estuaries. Although Portuguese regulations for monitoring sediment quality in relation to dredging activities consider only PAH, PCB and HCB, they also dictate that other organic contaminants such as butyltin compounds (BTs) should be monitored if suspicion of high values exists, but no action limits are defined for these (MAOTDR, 2007). Without action limits, the monitoring recommendation given in the regulations is not put into practice. Considering their toxicity, BT derivates should be integrated in the legislation, because they represent an environmental threat in the relocation of dredged material, especially when derived from harbour and shipyards areas. Based on this study, we recommend giving more attention to the amounts and impacts of BTs in sediments at dredged material disposal sites (DMDS) and their surroundings. Or even better, in order to be more efficient, monitoring should be done at the source of the dredged materials and not at the sink. In case it is not done, the monitoring of concentrations of TBT (and other BTs) in sediments and organisms, including imposex studies, at all Portuguese sites for disposal of dredged material receiving slightly to strongly contaminated dredged material must be developed.

14.
Mar Pollut Bull ; 191: 114902, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058834

ABSTRACT

Industrial deep-sea mining will release plumes containing metals that may disperse over long distances; however, there is no general understanding of metal effects on marine ecosystems. Thus, we conducted a systematic review in search of models of metal effects on aquatic biota with the future perspective to support Environmental Risk Assessment (ERA) of deep-sea mining. According to results, the use of models to study metal effects is strongly biased towards freshwater species (83% freshwater versus 14% marine); Cu, Hg, Al, Ni, Pb, Cd and Zn are the best-studied metals, and most studies target few species rather than entire food webs. We argue that these limitations restrain ERA on marine ecosystems. To overcome this gap of knowledge, we suggest future research directions and propose a modelling framework to predict the effects of metals on marine food webs, which in our view is relevant for ERA of deep-sea mining.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Food Chain , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals , Metals, Heavy/analysis
15.
Ecotoxicology ; 21(4): 1194-207, 2012 May.
Article in English | MEDLINE | ID: mdl-22362511

ABSTRACT

Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments. Changes in liver cytosolic protein regulation patterns were determined by a combination of two-dimensional electrophoresis with de novo sequencing by tandem mass spectrometry. From the forty-one cytosolic proteins found to be deregulated, nineteen were able to be identified, taking part in multiple cellular processes such as anti-oxidative defence, energy production, proteolysis and contaminant catabolism (especially oxidoreductase enzymes). Besides a clear distinction between animals exposed to the reference and contaminated sediments, differences were also observed between laboratory- and in situ-tested fish. Soles exposed in the laboratory to the contaminated sediments failed to induce, or even markedly down-regulated, many proteins, with the exception of a peroxiredoxin (an anti-oxidant enzyme) and a few others, when compared to reference fish. In situ exposure to the contaminated sediments revealed significant up-regulation of basal metabolism-related enzymes, comparatively to the reference condition. Down-regulation of basal metabolism enzymes, related to energy production and gene transcription, in fish exposed in the laboratory to the contaminated sediments, may be linked to sediment-bound contaminants and likely compromised the organisms' ability to deploy adequate responses against insult.


Subject(s)
Environmental Monitoring/methods , Flatfishes/metabolism , Liver/drug effects , Proteome/analysis , Water Pollutants, Chemical/analysis , Animals , Biological Assay , Down-Regulation , Flatfishes/growth & development , Geologic Sediments/chemistry , Liver/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Proteolysis , Proteomics/methods , Up-Regulation
16.
J Trace Elem Med Biol ; 71: 126957, 2022 May.
Article in English | MEDLINE | ID: mdl-35227975

ABSTRACT

Studies dealing with Rare Earth Elements (REE) ecotoxicological behavior are scattered and with potential conflicting results. Climate change impacts on aquatic biota and is known to modify contaminants toxicokinetic. Nevertheless, the current knowledge on the potential interactions between climate change and REE is virtually non-existent. Therefore, we focus our research on La and Gd as representatives of Light and Heavy REE that also are of great environmental concern. Experiments on different mediums (fresh-, brackish- and seawater) were designed to run at present-day and near-future conditions (T°=+4 °C, pH=△-0.4). Sampling was taken at different time scales from minutes to hours for one day. The main challenge was to evaluate the availability of La and Gd under environmental conditions closely related to climate changes scenarios. Furthermore, this study will contribute to the baseline knowledge by which future research towards understanding REE patterns and toxicity will build upon. Lanthanum and Gd behave differently with salinity. Temperature also affects the availability of dissolved La in freshwater. On the other hand, pH reduction causes the decrease of Gd in freshwater. In this medium, concentrations reduce sharply, presumably due to sorption processes or precipitates. In the brackish water experiment only the dissolved La levels in the Warming (T°=+4 °C) and Warming & Acidification (T°=+4 °C, pH=△0.4) diminished significantly through time. Dissolved La and Gd levels in seawater were relatively constant with time. The speciation of both elements is also of great relevance for ecotoxicological experiments. The trivalent free ions (La3+ and Gd3+) were the most common species in the trials. However, as ionic strength increases, the availability of other complexes rose, which should be subject of great attention for upcoming ecotoxicological studies.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Gadolinium/analysis , Lanthanum/toxicity , Lanthanum/analysis , Ecotoxicology , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Metals, Rare Earth/analysis
17.
Mar Pollut Bull ; 181: 113911, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35816821

ABSTRACT

Potassium hydroxide (KOH) digestion protocols are currently applied to separate microplastics from biological samples, allowing efficient digestion with minor degradation of polymers in a time- and cost-effective way. For biota samples with high-fat content, KOH reacts with triglycerides generating an overlying soap layer, making difficult the digestion and solubilization and subsequent microplastics extraction. Here we studied the addition of Tween-20 in different concentrations to evaluate the effect on the soap layer of post-digested samples. Addition of 10 % of Tween-20 presented higher flow rate during filtration, being set as optimal value. Incorporation of Tween-20 in the extraction procedure increased recovery rates of LDPE, PC and PET and appears to have a protective effect on PC and PET degradation. Tween-20 did not interfere in FTIR spectrum of polymers available in the marine environment. Being low-toxic, makes addition of Tween-20 a simple and economical way to optimize KOH digestion protocols for microplastics extraction.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Gastrointestinal Tract/chemistry , Plastics/metabolism , Polymers , Polysorbates , Soaps , Water Pollutants, Chemical/analysis
18.
Mar Pollut Bull ; 175: 113335, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093785

ABSTRACT

Increased Rare earth elements (REE) usage culminates in discharges into the environment. Mussels have been chosen as models in biomonitoring, hence, REE concentrations in Mytilus galloprovincialis from six locations on the Portuguese coast were accessed to determine natural concentrations and possible linkage to local ecosystem characteristics and temporal variations, by determining them in distinct seasons (autumn and spring). Samples from Porto Brandão (located on the south bank of the Tagus estuary) exhibited the highest REE concentrations, while mussels from Aljezur (the southernmost point on the Portuguese coast) exhibited the lowest, in both seasons. Overall, ∑REE concentration was greater in the spring. LREE enrichment relative to HREE occurs and a negative Ce and Eu anomaly was observed. This study constitutes the first assessment of REE composition on this model species in the Portuguese coast, in two distinct seasons and contributes to a better understanding of REE uptake for future biomonitoring studies.


Subject(s)
Metals, Rare Earth , Mytilus , Animals , Biological Monitoring , Ecosystem , Environmental Monitoring , Metals, Rare Earth/analysis , Portugal , Seasons
20.
Chemosphere ; 302: 134850, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35551939

ABSTRACT

Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 µg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.


Subject(s)
Bivalvia , Spisula , Water Pollutants, Chemical , Animals , Climate Change , Hydrogen-Ion Concentration , Lanthanum/toxicity , Oceans and Seas , Seawater , Superoxide Dismutase , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL