Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Bioresour Technol ; 268: 470-479, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30114666

ABSTRACT

Aerobic and anaerobic fungi are among the most effective plant biomass degraders known and have high potential to increase the efficiency of lignocellulosic biomass utilization, such as for biogas generation. However, limited information is available on their contribution to such industrial processes. Therefore, the presence of fungi along the biogas production chain of one-phase and two-phase biogas plants in Germany was analyzed. Seventeen aerobic species of Zygomycota, Ascomycota and Basidiomycota were identified, including efficient producers of lignocellulases, such as Trichoderma capillare isolated from a hydrolysis tank and Coprinopsis cinerea from fibers separated from pressed digestate. Five anaerobic fungal species of the phylum Neocallimastigomycota (comprising two novel clades) were present in an slightly acidic fermenter of a biogas plant fed with cow manure displaying endoglucanase transcriptional activity. The broad fungal presence demonstrated in this study can serve developing bioaugmentation systems with relevant lignocellulolytic fungi to improve biogas production from recalcitrant fiber material.


Subject(s)
Biofuels , Manure , Anaerobiosis , Animals , Biomass , Cattle , Female , Germany
2.
J Microbiol Methods ; 127: 28-40, 2016 08.
Article in English | MEDLINE | ID: mdl-27220661

ABSTRACT

Anaerobic fungi (AF) decompose plant material with their rhizoid and multiple cellulolytic enzymes. They disintegrate the complex structure of lignocellulosic substrates, making them more accessible and suitable for further microbial degradation. There is also much interest in their use as biocatalysts for biotechnological applications. Here, three novel polymerase chain reaction (PCR)-based methods for detecting AF and their transcriptional activity in in vitro cultures and environmental samples were developed. Two real-time quantitative PCR (qPCR)-based methods targeting AF were developed: AF-SSU, was designed to quantify the 18S rRNA genes of AF. AF-Endo, measuring transcripts of an endoglucanase gene from the glycoside hydrolase family 5 (GH5), was developed to quantify their transcriptional cellulolytic activity. The third PCR based approach was designed for phylogenetical analysis. It targets the 28S rRNA gene (LSU) of AF revealing their phylogenetic affiliation. The in silico-designed primer/probe combinations were successfully tested for the specific amplification of AF from animal and biogas plant derived samples. In combination, these three methods represent useful tools for the analysis of AF transcriptional cellulolytic activity, their abundance and their phylogenetic placement.


Subject(s)
Biotechnology/methods , Neocallimastigomycota/classification , Neocallimastigomycota/genetics , Real-Time Polymerase Chain Reaction/methods , Anaerobiosis , Cellulase/genetics , DNA Primers , Lignin/metabolism , Neocallimastigomycota/isolation & purification , Phylogeny , Transcription, Genetic
3.
Adv Biochem Eng Biotechnol ; 151: 41-61, 2015.
Article in English | MEDLINE | ID: mdl-26337843

ABSTRACT

Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.


Subject(s)
Biofuels , Fungi/metabolism , Anaerobiosis , Fungi/classification
SELECTION OF CITATIONS
SEARCH DETAIL