Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Glia ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982826

ABSTRACT

During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.

2.
Development ; 145(4)2018 02 23.
Article in English | MEDLINE | ID: mdl-29475972

ABSTRACT

Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates in situ the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored. We found that connexin 30, independently of gap-junction-mediated intercellular biochemical coupling, alters the orientation of astrocyte protrusion, centrosome and Golgi apparatus during polarized migration in an in vitro wound-healing assay. Connexin 30 sets the orientation of astroglial motile protrusions via modulation of the laminin/ß1 integrin/Cdc42 polarity pathway. Connexin 30 indeed reduces laminin levels, inhibits the redistribution of the ß1-integrin extracellular matrix receptors, and inhibits the recruitment and activation of the small Rho GTPase Cdc42 at the leading edge of migrating astrocytes. In vivo, connexin 30, the expression of which is developmentally regulated, also contributes to the establishment of hippocampal astrocyte polarity during postnatal maturation. This study thus reveals that connexin 30 controls astroglial polarity during development.


Subject(s)
Astrocytes/cytology , Brain/cytology , Cell Polarity/physiology , Connexin 30/metabolism , Animals , Astrocytes/physiology , Brain/metabolism , Brain/physiology , Cell Migration Assays , Fluorescent Antibody Technique , Mice
3.
Genes Dev ; 25(8): 831-44, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21498572

ABSTRACT

Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.


Subject(s)
Neurogenesis/physiology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Lymphangiogenesis/genetics , Lymphangiogenesis/physiology , Mice , Mice, Mutant Strains , Microscopy, Electron, Transmission , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor Receptor-3/genetics
4.
Mol Cell Neurosci ; 45(1): 37-46, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20684043

ABSTRACT

Astrocytes express high levels of connexin43, a protein that forms two types of channels: gap junction channels for direct intercellular communication, and hemichannels for exchanges with the extracellular space. Inflammation induces connexin43 hemichannel activation, which has been proposed to be involved in neuroglial interactions. Here, we investigated the contribution of connexin43 to NMDA-induced excitotoxicity in neuron/astrocyte co-cultures, after treatment with a pro-inflammatory cytokine mixture, containing TNF-alpha and IL1-beta (Mix), that stimulated astroglial connexin43 hemichannel activity. Interestingly, NMDA treatment induced a higher amount of neurotoxicity in Mix-treated co-cultures than in untreated ones, whereas this extent of neurotoxicity was absent in enriched neuron cultures or in co-cultures with connexin43 knock-out astrocytes. Furthermore, application of connexin43 hemichannel blockers or a synthetic cannabinoid prevented the Mix-induced potentiated NMDA neurotoxicity. Altogether, these data demonstrate that inflammation-induced astroglial hemichannel activation plays a critical role in neuronal death and suggest a neuroprotective role of connexin43 hemichannel blockade.


Subject(s)
Astrocytes/metabolism , Connexin 43/metabolism , Cytokines/metabolism , Gap Junctions/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Cell Death/physiology , Cells, Cultured , Coculture Techniques , Female , Fluorescent Dyes/metabolism , Interleukin-1beta/pharmacology , Mice , Mice, Knockout , N-Methylaspartate/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Pregnancy , Tumor Necrosis Factor-alpha/pharmacology
5.
Science ; 373(6550): 77-81, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34210880

ABSTRACT

Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix-degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA-guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.


Subject(s)
Astrocytes/physiology , Critical Period, Psychological , Neuronal Plasticity , Visual Cortex/growth & development , Animals , Astrocytes/metabolism , Connexin 30/metabolism , Enzyme Activation , GTP Phosphohydrolases/metabolism , Interneurons/metabolism , Interneurons/physiology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Synapses/metabolism , rhoA GTP-Binding Protein/metabolism
6.
Cancer Cell Int ; 10: 1, 2010 01 11.
Article in English | MEDLINE | ID: mdl-20142996

ABSTRACT

BACKGROUND: ASPM (Abnormal Spindle-like Microcephaly associated) over-expression was recently implicated in the development of malignant gliomas. RESULTS: To better characterize the involvement of ASPM in gliomas, we investigated the mRNA expression in 175 samples, including 8 WHO Grade II, 75 WHO Grade III and 92 WHO Grade IV tumors. Aspm expression was strongly correlated with tumor grade and increased at recurrence when compared to the initial lesion, whatever the initial grade of the primary tumor. ASPM expression also increased over serial passages in gliomaspheres in vitro and in mouse xenografts in vivo. Lentivirus-mediated shRNA silencing of ASPM resulted in dramatic proliferation arrest and cell death in two different gliomasphere models. CONCLUSION: These data suggest that ASPM is involved in the malignant progression of gliomas, possibly through expansion of a cancer stem cell compartment, and is an attractive therapeutic target in glioblastoma multiforme.

7.
Stem Cell Reports ; 12(5): 1159-1177, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31031189

ABSTRACT

Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , RNA/genetics , Spinal Cord/metabolism , Stem Cells/metabolism , Animals , Embryonic Stem Cells/cytology , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Female , Humans , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Middle Aged , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , RNA/metabolism , Spinal Cord/cytology , Stem Cell Niche , Stem Cells/cytology , Young Adult
8.
FASEB J ; 20(3): 494-6, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16423877

ABSTRACT

Brain inflammation is characterized by a reactive gliosis involving the activation of astrocytes and microglia. This process, common to many brain injuries and diseases, underlies important phenotypic changes in these two glial cell types. One characteristic feature of astrocytes is their high level of intercellular communication mediated by gap junctions. Previously, we have reported that astrocyte gap junctional communication (AGJC) and the expression of connexin 43 (Cx43), the main constitutive protein of gap junctions, are inhibited in microglia (MG)-astrocyte cocultures. Here, we report that bacterial lipopolysaccharide activation of microglia increases their inhibitory effect on Cx43 expression and AGJC. This inhibition is mimicked by treating astrocyte cultures with conditioned medium harvested from activated microglia. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were identified as being the main factors responsible for this conditioned medium-mediated activity. Interestingly, an inflammatory response characterized by MG activation and reactive astrocytes occurs in Alzheimer's disease, at sites of beta-amyloid (Abeta) deposits. We found that this peptide potentiates the inhibitory effect of a conditioned medium diluted at a concentration that is not effective per se. This potentiation is prevented by treating astrocytes with specific blockers of IL-1beta and TNF-alpha activities. Thus, the suppression of communication between astrocytes, induced by activated MG could contribute to the proposed role of reactive gliosis in this neurodegenerative disease.


Subject(s)
Amyloid beta-Peptides/pharmacology , Astrocytes/drug effects , Gap Junctions/drug effects , Interleukin-1/pharmacology , Microglia/metabolism , Peptide Fragments/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Astrocytes/physiology , Cell Communication/drug effects , Cells, Cultured/drug effects , Cells, Cultured/physiology , Connexin 43/biosynthesis , Culture Media, Conditioned/pharmacology , Gap Junctions/physiology , Interleukin 1 Receptor Antagonist Protein , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Lipopolysaccharides/pharmacology , Mice , Nerve Degeneration , Sialoglycoproteins/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
10.
J Vis Exp ; (108): 53617, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26967835

ABSTRACT

The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.


Subject(s)
Adult Stem Cells/cytology , Brain/cytology , Multipotent Stem Cells/cytology , Neural Stem Cells/cytology , Animals , Brain/physiology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Proliferation/physiology , Cerebellum/cytology , Neurogenesis/physiology , Regeneration/physiology , Telencephalon/cytology , Zebrafish
11.
J Neuroimmunol ; 170(1-2): 21-30, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16185773

ABSTRACT

Brain macrophages are known to exert dual and opposing functions on neuronal survival, which can be either beneficial or detrimental. The rationale of our study is that this duality could arise from an exclusive secretion of either pro- or anti-inflammatory cytokine by distinct cell subsets, cytokines that could respectively mediate neurotoxic or neurotrophic effects. Innate immune response was induced in macrophage cultures prepared from embryonic-day-16 to postnatal-day-8 mouse brains. By immunofluorescent detection of intracellular cytokines, we have assessed the occurrence of TNFalpha or IL10 synthesis at single cell level and observed distinct secretory patterns that include cells producing exclusively TNFalpha or IL10, cells producing both cytokines and non-producer cells. These secretory patterns are differentially regulated by MAP-kinase inhibitors. Altogether, these results demonstrate that synthesis of either a pro- or an anti-inflammatory cytokine can segregate distinct brain macrophages and suggests a functional cell-subset-specialisation.


Subject(s)
Anti-Inflammatory Agents/metabolism , Brain/metabolism , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Animals , Brain/cytology , CD11b Antigen/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Dinoprostone/pharmacology , Drug Tolerance , Enzyme Inhibitors/pharmacology , Interleukin-10/metabolism , Intracellular Membranes/metabolism , Lipopolysaccharides/pharmacology , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Toll-Like Receptor 2/physiology , Toll-Like Receptor 4/physiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
12.
Dev Cell ; 32(5): 546-60, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25662174

ABSTRACT

Dicer controls the biogenesis of microRNAs (miRNAs) and is essential for neurogenesis. Recent reports show that the levels and substrate selectivity of DICER result in the preferential biogenesis of specific miRNAs in vitro. However, how dicer expression levels and miRNA biogenesis are regulated in vivo and how this affects neurogenesis is incompletely understood. Here we show that during zebrafish hindbrain development dicer expression levels are controlled by miR-107 to tune the biogenesis of specific miRNAs, such as miR-9, whose levels regulate neurogenesis. Loss of miR-107 function stabilizes dicer levels and miR-9 biogenesis across the ventricular hindbrain zone, resulting in an increase of both proliferating progenitors and postmitotic neurons. miR-9 ectopic accumulation in differentiating neuronal cells recapitulated the excessive neurogenesis phenotype. We propose that miR-107 modulation of dicer levels in differentiating neuronal cells is required to maintain the homeostatic levels of specific miRNAs, whose precise accumulation is essential for neurogenesis.


Subject(s)
Cell Differentiation , MicroRNAs/physiology , Neurons/cytology , Rhombencephalon/metabolism , Ribonuclease III/genetics , Zebrafish Proteins/genetics , Animals , Blotting, Western , Cell Proliferation , Immunoenzyme Techniques , In Situ Hybridization , Neurogenesis , Neurons/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rhombencephalon/growth & development , Tumor Cells, Cultured , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
13.
Cell Rep ; 10(7): 1158-72, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25704818

ABSTRACT

Neural stem cells (NSCs) continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR) 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs), VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.


Subject(s)
Neural Stem Cells/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Signal Transduction , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/pharmacology , Vascular Endothelial Growth Factor Receptor-3/genetics
14.
Cell Commun Adhes ; 10(4-6): 407-11, 2003.
Article in English | MEDLINE | ID: mdl-14681049

ABSTRACT

Neurons and brain macrophages (BM), respectively, increase and inhibit gap junctional communication (GJC) and connexin expression in cultured astrocytes. Thus, in brain diseases and injuries, neuronal death associated with the BM activation may decrease GJC in astrocytes and therefore have a physiopathological relevance.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Connexins/metabolism , Macrophages/metabolism , Neurons/metabolism , Animals , Astrocytes/cytology , Brain/cytology , Cell Communication/physiology , Gap Junctions/metabolism , Macrophages/cytology , Neurons/cytology
15.
J Neurosci Res ; 80(5): 707-14, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15880558

ABSTRACT

Albumin, a blood protein absent from the adult brain in physiological situations, can be brought into contact with brain cells during development or, in adult, following breakdown of the blood-brain barrier occurring as a result of local inflammation. In the present study, we show that ovalbumin and albumin induce the release of monocyte chemotactic protein 1 (MCP-1/CCL2) from rat embryonic mixed brain cells. A short-term exposure to ovalbumin during the cell dissociation procedure is sufficient to generate MCP-1 mRNA. A comparable effect is observed when the cells are incubated for 4 hr with ovalbumin or rat albumin, while MCP-1 messengers are barely detectable following bovine albumin exposure. The amount of MCP-1 protein measured in 4 hr-supernatants of albumin-treated cells followed the same albumin-inducing pattern as that of MCP-1 mRNA, while all albumins tested induced MCP-1 protein after a 17 hr-incubation period. The albumin-induced MCP-1 production is significantly inhibited in calphostin C-treated cells, suggesting the implication of a protein kinase C-dependent signaling pathway. This MCP-1-inducing activity is maintained after a lipid extraction procedure but abolished by proteinase K or trypsin treatments of albumin. The MCP-1 secretion following albumin contact with nervous cells could thus interfere, by chemotactic gradient formation, with the brain infiltration program of blood-derived cells during development or brain injury.


Subject(s)
Brain/cytology , Chemokine CCL2/genetics , Ovalbumin/pharmacology , Serum Albumin, Bovine/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/physiology , Brain/embryology , Cells, Cultured , Chemokine CCL2/metabolism , Coculture Techniques , Gene Expression/drug effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Rats , Rats, Inbred Strains
16.
Glia ; 45(1): 28-38, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14648543

ABSTRACT

Cultured astrocytes are highly coupled by gap junction channels mainly constituted by connexin 43. We have previously shown that gap junctional communication (GJC) represents a functional property of astrocytes that is a target for their interaction with other brain cell types, including neurons and brain macrophages. In pathological situations, neurons as well as brain macrophages produce superoxide ions leading to the formation of hydrogen peroxide (H2O2) that can be cytotoxic. We report here that 10-min exposure to 100 microM H2O2 increases GJC in astrocytes. Moreover, 30-min exposure to 100 microM H2O2 induces, 24 h later, an astrocyte cell death by both apoptosis and necrosis. This H2O2-induced astrocyte cell death is not affected when gap junctions are inhibited by several uncoupling agents, including 18alpha-glycyrrhetinic acid, halothane, heptanol, and endothelin-1, indicating that the proportion of cell death is not related to the level of GJC. The effect of H2O2 on gap junction channels does not result from the production of free radicals but is rather linked to modification of the redox equilibrium in astrocytes. Indeed, an oxidative agent reproduces the H2O2-evoked response while reducing agents prevent the effect of H2O2. Finally, when astrocytes are cocultured with brain macrophages, the effects of H2O2 on both GJC and toxicity are not observed, revealing a new protective role of brain macrophages during oxidative stress.


Subject(s)
Astrocytes/drug effects , Cell Communication/drug effects , Gap Junctions/drug effects , Hydrogen Peroxide/pharmacology , Macrophages/drug effects , Animals , Astrocytes/physiology , Brain/drug effects , Brain/physiology , Cell Communication/physiology , Cells, Cultured , Female , Gap Junctions/physiology , Macrophages/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnancy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL