Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 123(14): 148301, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702219

ABSTRACT

We experimentally and theoretically investigate the dynamics of inhibitory coupled self-driven oscillators on a star network in which a single central hub node is connected to k peripheral arm nodes. The system consists of water-in-oil Belousov-Zhabotinsky ∼100 µm emulsion drops contained in storage wells etched in silicon wafers. We observed three dynamical attractors by varying the number of arms in the star graph and the coupling strength: (i) unlocked, uncorrelated phase shifts between all oscillators; (ii) locked, arm hubs synchronized in phase with a k-dependent phase shift between the arm and central hub; and (iii) center silent, a central hub stopped oscillating and the arm hubs oscillated without synchrony. We compare experiment to theory. For case (ii), we identified a logarithmic dependence of the phase shift on star degree, and were able to discriminate between contributions to the phase shift arising from star topology and oscillator chemistry.

2.
Chaos ; 25(6): 064611, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26117136

ABSTRACT

Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay.

3.
Science ; 378(6626): 1301-1305, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36548408

ABSTRACT

Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.

SELECTION OF CITATIONS
SEARCH DETAIL