Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Dev Psychobiol ; 65(1): e22352, 2023 01.
Article in English | MEDLINE | ID: mdl-36567654

ABSTRACT

Maternal prenatal psychosocial stress is associated with adverse hypothalamic-pituitary-adrenal axis (HPAA) function among infants. Although the biological mechanisms influencing this process remain unknown, altered DNA methylation is considered to be one potential mechanism. We investigated associations between maternal prenatal psychological distress, infant salivary DNA methylation, and stress physiology at 12 months. Mother's distress was measured via depression and anxiety in early and late pregnancy in a cohort of 80 pregnant adolescents. Maternal hair cortisol was collected during pregnancy. Saliva samples were collected from infants at 12 months to quantify DNA methylation of three stress-related genes (FKBP5, NR3C1, OXTR) (n = 62) and diurnal cortisol (n = 29). Multivariable linear regression was used to test for associations between prenatal psychological distress, and infant DNA methylation and cortisol. Hair cortisol concentrations in late pregnancy were negatively associated with two sites of FKBP5 (site 1: B = -22.33, p = .003; site 2: B = -15.60, p = .012). Infants of mothers with elevated anxiety symptoms in late pregnancy had lower levels of OXTR2 CpG2 methylation (B = -2.17, p = .03) and higher evening salivary cortisol (B = 0.41, p = .03). Furthermore, OXTR2 methylation was inversely associated with evening cortisol (B = -0.14, p-value ≤ .001). Our results are, to our knowledge, the first evidence that the methylation of the oxytocin receptor may contribute to the regulation of HPAA during infancy.


Subject(s)
Mothers , Prenatal Exposure Delayed Effects , Female , Adolescent , Humans , Infant , Pregnancy , Mothers/psychology , DNA Methylation , Hydrocortisone , Hypothalamo-Hypophyseal System , Brazil , Depression/psychology , Stress, Psychological , Pituitary-Adrenal System
2.
Clin Epigenetics ; 14(1): 152, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443840

ABSTRACT

BACKGROUND: Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. RESULTS: Using the Western Region Birth Cohort (ROC-São Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R2 = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R2 = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. CONCLUSION: Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition.


Subject(s)
DNA Methylation , Glucocorticoids , Adult , Female , Male , Infant, Newborn , Pregnancy , Humans , Gestational Age , Glucocorticoids/adverse effects , Brazil , Biomarkers , Acceleration , Epigenesis, Genetic
3.
PLoS One ; 17(12): e0275999, 2022.
Article in English | MEDLINE | ID: mdl-36469522

ABSTRACT

Bipolar Disorder (BD) has recently been related to a process of accelerated aging, with shortened leukocyte telomere length (LTL) in this population. It has also been observed that the suicide rate in BD patients is higher than in the general population, and more recently the telomere length variation has been described as shorter in suicide completers compared with control subjects. Objectives The aim of the present study was to investigate if there is an association between LTL and BD in families where two or more members have BD including clinical symptomatology variables, along with suicide behavior. Methods Telomere length and single copy gene ratio (T/S ratio) was measured using quantitative polymerase chain reaction in a sample of 143 relatives from 22 families, of which 60 had BD. The statistical analysis was performed with a polygenic mixed model. Results LTL was associated with suicidal ideation (p = 0.02) as that there is an interaction between suicidal ideation and course of the disorder (p = 0.02). The estimated heritability for LTL in these families was 0.68. In addition, covariates that relate to severity of disease, i.e. suicidal ideation and course of the disorder, showed an association with shorter LTL in BD patients. No difference in LTL between BD patients and healthy relatives was observed. Conclusion LTL are shorter in subjects with familial BD suggesting that stress related sub-phenotypes possibly accelerate the process of cellular aging and correlate with disease severity and suicidal ideation.


Subject(s)
Bipolar Disorder , Suicide , Humans , Bipolar Disorder/genetics , Suicidal Ideation , Telomere/genetics , Leukocytes , Telomere Shortening/genetics
4.
BMC Genom Data ; 22(1): 45, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717534

ABSTRACT

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. RESULTS: There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. CONCLUSIONS: DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD.


Subject(s)
Brain/metabolism , DNA Methylation , Obsessive-Compulsive Disorder/genetics , Aged , Caudate Nucleus , CpG Islands/genetics , Female , Gyrus Cinguli , Humans , Immune System/metabolism , Immunity/genetics , Male , Neuronal Plasticity/genetics , Nucleus Accumbens , Prefrontal Cortex , Putamen
5.
Braz J Psychiatry ; 41(6): 485-493, 2019.
Article in English | MEDLINE | ID: mdl-31116258

ABSTRACT

OBJECTIVE: Cocaine use disorders (CUDs) represent a major public health problem in many countries. To better understand the interaction between the environmental modulations and phenotype, the aim of the present study was to investigate the DNA methylation pattern of CUD patients, who had concomitant cocaine and crack dependence, and healthy controls. METHODS: We studied DNA methylation profiles in the peripheral blood of 23 CUD patients and 24 healthy control subjects using the Illumina Infinium HumanMethylation450 BeadChip arrays. RESULTS: Comparison between CUD patients and controls revealed 186 differentially methylated positions (DMPs; adjusted p-value [adjP] < 10-5) related to 152 genes, with a subset of CpGs confirmed by pyrosequencing. DNA methylation patterns discriminated CUD patients and control groups. A gene network approach showed that the EHMT1, EHMT2, MAPK1, MAPK3, MAP2K1, and HDAC5 genes, which are involved in transcription and chromatin regulation cellular signaling pathways, were also associated with cocaine dependence. CONCLUSION: The investigation of DNA methylation patterns may contribute to a better understanding of the biological mechanisms involved in CUD.


Subject(s)
Cocaine-Related Disorders/blood , Cocaine-Related Disorders/genetics , Crack Cocaine , DNA Methylation , Genome-Wide Association Study/methods , Adult , Case-Control Studies , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens/genetics , Histone Deacetylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Linear Models , MAP Kinase Kinase 1/genetics , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Statistics, Nonparametric , Young Adult
6.
Psychiatr Genet ; 26(6): 229-257, 2016 12.
Article in English | MEDLINE | ID: mdl-27606929

ABSTRACT

The XXIIIrd World Congress of Psychiatric Genetics meeting, sponsored by the International Society of Psychiatric Genetics, was held in Toronto, ON, Canada, on 16-20 October 2015. Approximately 700 participants attended to discuss the latest state-of-the-art findings in this rapidly advancing and evolving field. The following report was written by trainee travel awardees. Each was assigned one session as a rapporteur. This manuscript represents the highlights and topics that were covered in the plenary sessions, symposia, and oral sessions during the conference, and contains major notable and new findings.


Subject(s)
Mental Disorders/genetics , Genome-Wide Association Study , Humans , Mental Health
7.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 41(6): 485-493, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055347

ABSTRACT

Objective: Cocaine use disorders (CUDs) represent a major public health problem in many countries. To better understand the interaction between the environmental modulations and phenotype, the aim of the present study was to investigate the DNA methylation pattern of CUD patients, who had concomitant cocaine and crack dependence, and healthy controls. Methods: We studied DNA methylation profiles in the peripheral blood of 23 CUD patients and 24 healthy control subjects using the Illumina Infinium HumanMethylation450 BeadChip arrays. Results: Comparison between CUD patients and controls revealed 186 differentially methylated positions (DMPs; adjusted p-value [adjP] < 10-5) related to 152 genes, with a subset of CpGs confirmed by pyrosequencing. DNA methylation patterns discriminated CUD patients and control groups. A gene network approach showed that the EHMT1, EHMT2, MAPK1, MAPK3, MAP2K1, and HDAC5 genes, which are involved in transcription and chromatin regulation cellular signaling pathways, were also associated with cocaine dependence. Conclusion: The investigation of DNA methylation patterns may contribute to a better understanding of the biological mechanisms involved in CUD.


Subject(s)
Humans , Male , Adult , Young Adult , Crack Cocaine , DNA Methylation , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/blood , Genome-Wide Association Study/methods , Case-Control Studies , Linear Models , Histone-Lysine N-Methyltransferase/genetics , Statistics, Nonparametric , Mitogen-Activated Protein Kinase 1/genetics , MAP Kinase Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens/genetics , Histone Deacetylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL