Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Ann Rheum Dis ; 67(11): 1617-25, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18218665

ABSTRACT

OBJECTIVES: Basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbapatite (CA) and hydroxyapatite (HA)) are associated with severe forms of osteoarthritis. In advanced osteoarthritis, cartilage shows chondrocyte apoptosis, overexpression of annexin 5 (A5) and BCP crystal deposition within matrix vesicles. We assessed in vitro whether BCP crystals and overexpression of A5 increased chondrocyte apoptosis. METHODS: Apoptosis was induced by BCP crystals, tumour necrosis factor (TNF)-alpha (20 ng/ml) and Fas ligand (20 ng/ml) in normal articular chondrocytes (control) and in A5 overexpressed chondrocytes, performed by adenovirus infection. Apoptosis was assessed by caspase 3 (Cas3) activity, and DNA fragmentation. RESULTS: All BCP crystals, TNF-alpha and Fas ligand induced chondrocyte apoptosis as demonstrated by decreased cell viability and increased Cas3 activity and DNA fragmentation. TUNEL (terminal deoxyribonucleotide transferase-mediated dUTP nick end-labelling)-positive staining chondrocytes were increased by OCP (12.4 (5.2)%), CA (9.6 (2.6)%) and HA (9.2 (3.0)%) crystals and TNF-alpha (9.6 (2.4)%) stimulation compared with control (3.1 (1.9)%). BCP crystals increased Cas3 activity in a dose-dependent fashion. BCP-crystal-induced chondrocyte apoptosis was independent from TNF-alpha and interleukin-1beta pathways but required cell-crystal contact and intralysosomal crystal dissolution. Indeed, preincubation with ammonium chloride, a lysosomal inhibitor of BCP crystal dissolution, significantly decreased BCP-crystal-induced Cas3 activity. Finally, overexpression of A5 enhanced BCP crystal- and TNF-alpha-induced chondrocyte apoptosis. CONCLUSIONS: Overexpression of A5 and the presence of BCP crystals observed in advanced osteoarthritis contributed to chondrocyte apoptosis. Our results suggest a new pathophysiological mechanism for calcium-containing crystal arthropathies.


Subject(s)
Annexin A5/physiology , Apoptosis/drug effects , Calcium Phosphates/pharmacology , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Animals , Annexin A5/metabolism , Apoptosis/physiology , Calcium Phosphates/metabolism , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Caspase 3/metabolism , Cattle , Cells, Cultured , Chondrocytes/metabolism , Crystallization , DNA Fragmentation , Tumor Necrosis Factor-alpha/physiology , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL