Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796704

ABSTRACT

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Mucolipidoses , Neuraminidase , Animals , Dependovirus/genetics , Genetic Therapy/methods , Mucolipidoses/therapy , Mucolipidoses/genetics , Neuraminidase/genetics , Neuraminidase/metabolism , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Humans , Lysosomes/metabolism , Mice, Knockout , Transduction, Genetic , Gene Expression
2.
J Biol Chem ; 298(10): 102425, 2022 10.
Article in English | MEDLINE | ID: mdl-36030822

ABSTRACT

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Subject(s)
Actins , Calcium-Binding Proteins , Exosomes , Syntenins , Actin Cytoskeleton/metabolism , Actins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Proteomics , Syntenins/metabolism , Humans , Animals , Mice , Protein Multimerization
3.
Cell Rep ; 43(5): 114117, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38630590

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum , G(M1) Ganglioside , Gangliosidosis, GM1 , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Mice , Calcium/metabolism , Cell Membrane/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , G(M1) Ganglioside/metabolism , Gangliosidosis, GM1/metabolism , Gangliosidosis, GM1/pathology , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Male , Female
4.
J Biol Chem ; 287(15): 12159-71, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22334701

ABSTRACT

Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium-Binding Proteins/metabolism , Muscle, Skeletal/physiology , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Calcium-Binding Proteins/genetics , Cell Adhesion , Cell Line , Cell Movement , Cortactin/metabolism , Mice , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Pseudopodia/metabolism , Repressor Proteins/genetics , Two-Hybrid System Techniques , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases/genetics , Ubiquitination
5.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014061

ABSTRACT

Sialidosis is a glycoprotein storage disease caused by deficiency of the lysosomal sialidase NEU1, which leads to pathogenic accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids. The disease belongs to the group of orphan disorders with no therapy currently available. Here, we have tested the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis in a mouse model of the disease. One-month-old Neu1 -/- mice were co-injected with two scAAV2/8 vectors, expressing NEU1 and its chaperone PPCA, and sacrificed at 3 months post-injection. Treated mice were phenotypically indistinguishable from their WT controls. Histopathologically, they showed diminished or absent vacuolization in cells of visceral organs, including the kidney, as well as the choroid plexus and other areas of the brain. This was accompanied by restoration of NEU1 activity in most tissues, reversal of sialyl-oligosacchariduria, and normalization of lysosomal exocytosis in the CSF and serum of treated mice. AAV injection prevented the occurrence of generalized fibrosis, which is a prominent contributor of disease pathogenesis in Neu1 -/- mice and likely in patients. Overall, this therapeutic strategy holds promise for the treatment of sialidosis and may be applicable to adult forms of human idiopathic fibrosis with low NEU1 expression.

6.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37503076

ABSTRACT

High energy-demanding tissues, such as skeletal muscle, require mitochondrial proteostasis to function properly. Two quality-control mechanisms, the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles, safeguard mitochondrial proteostasis. However, whether these processes interact is unknown. Here we show that the E3 ligase CRL5 Ozz , a member of the UPS, and its substrate Alix control the mitochondrial concentration of Slc25A4, a solute carrier that is essential for ATP production. The mitochondria in Ozz -/- or Alix -/- skeletal muscle share overt morphologic alterations (they are supernumerary, swollen, and dysmorphic) and have abnormal metabolomic profiles. We found that CRL5 Ozz ubiquitinates Slc25A4 and promotes its proteasomal degradation, while Alix facilitates SLC25A4 loading into exosomes destined for lysosomal destruction. The loss of Ozz or Alix offsets steady-state levels of Slc25A4, which disturbs mitochondrial metabolism and alters muscle fiber composition. These findings reveal hitherto unknown regulatory functions of Ozz and Alix in mitochondrial proteostasis.

7.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37503265

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.

8.
Mol Genet Metab ; 106(1): 99-103, 2012 May.
Article in English | MEDLINE | ID: mdl-22386972

ABSTRACT

Galactosialidosis is a lysosomal storage disorder caused by loss of function of protective protein cathepsin A, which leads to secondary deficiencies of ß-galactosidase and neuraminidase-1. Emphysema has not been previously reported as a possible complication of this disorder, but we now describe this condition in a 41-year-old, non-smoking male. Our patient did not display deficiency in α-1-antitrypsin, the most common cause of emphysema in non-smokers, which brings about disseminated elastolysis. We therefore hypothesized that loss of cathepsin A activity was responsible because of previously published evidence showing it is prerequisite for normal elastogenesis. We now present experimental evidence to support this theory by demonstrating impaired primary elastogenesis in cultures of dermal fibroblasts from our patient. The obtained data further endorse our previous finding that functional integrity of the cell surface-targeted molecular complex of cathepsin A, neuraminidase-1 and the elastin-binding protein (spliced variant of ß-galactosidase) is prerequisite for the normal assembly of elastic fibers. Importantly, we also found that elastic fiber production was increased after exposure either to losartan, spironolactone, or dexamethasone. Of immediate clinical relevance, our data suggest that surviving patients with galactosialidosis should have periodic assessment of their pulmonary function. We also encourage further experimental exploration of therapeutic potential of the afore-mentioned elastogenesis-stimulating drugs for the alleviation of pathological processes in galactosialidosis that could be mechanistically linked to impaired deposition of elastic fibers.


Subject(s)
Cathepsin A , Elastic Tissue , Emphysema , Lysosomal Storage Diseases , Adult , Cathepsin A/genetics , Cathepsin A/metabolism , Cells, Cultured , Elastic Tissue/enzymology , Elastic Tissue/growth & development , Elastic Tissue/ultrastructure , Elastin/genetics , Elastin/metabolism , Emphysema/etiology , Emphysema/pathology , Fibrillins , Fibroblasts , Gene Expression/genetics , Humans , Lysosomal Storage Diseases/complications , Lysosomal Storage Diseases/pathology , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
Sci Rep ; 12(1): 7820, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551201

ABSTRACT

Ozz, a member of the SOCS-box family of proteins, is the substrate-binding component of CRL5Ozz, a muscle-specific Cullin-RING ubiquitin ligase complex composed of Elongin B/C, Cullin 5 and Rbx1. CRL5Ozz targets for proteasomal degradation selected pools of substrates, including sarcolemma-associated ß-catenin, sarcomeric MyHCemb and Alix/PDCD6IP, which all interact with the actin cytoskeleton. Ubiquitination and degradation of these substrates are required for the remodeling of the contractile sarcomeric apparatus. However, how CRL5Ozz assembles into an active E3 complex and interacts with its substrates remain unexplored. Here, we applied a baculovirus-based expression system to produce large quantities of two subcomplexes, Ozz-EloBC and Cul5-Rbx1. We show that these subcomplexes mixed in a 1:1 ratio reconstitutes a five-components CRL5Ozz monomer and dimer, but that the reconstituted complex interacts with its substrates only as monomer. The in vitro assembled CRL5Ozz complex maintains the capacity to polyubiquitinate each of its substrates, indicating that the protein production method used in these studies is well-suited to generate large amounts of a functional CRL5Ozz. Our findings highlight a mode of assembly of the CRL5Ozz that differs in presence or absence of its cognate substrates and grant further structural studies.


Subject(s)
Cullin Proteins , Ubiquitin-Protein Ligases , Cullin Proteins/genetics , Protein Binding , Sarcomeres/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/metabolism
10.
Mol Ther Methods Clin Dev ; 23: 644-658, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34901309

ABSTRACT

AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.

11.
J Biol Chem ; 284(41): 28430-28441, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19666471

ABSTRACT

Lysosomal neuraminidase-1 (NEU1) forms a multienzyme complex with beta-galactosidase and protective protein/cathepsin A (PPCA). Because of its association with PPCA, which acts as a molecular chaperone, NEU1 is transported to the lysosomal compartment, catalytically activated, and stabilized. However, the mode(s) of association between these two proteins both en route to the lysosome and in the multienzyme complex has remained elusive. Here, we have analyzed the hydrodynamic properties of PPCA, NEU1, and a complex of the two proteins and identified multiple binding sites on both proteins. One of these sites on NEU1 that is involved in binding to PPCA can also bind to other NEU1 molecules, albeit with lower affinity. Therefore, in the absence of PPCA, as in the lysosomal storage disease galactosialidosis, NEU1 self-associates into chain-like oligomers. Binding of PPCA can reverse self-association of NEU1 by causing the disassembly of NEU1-oligomers and the formation of a PPCA-NEU1 heterodimeric complex. The identification of binding sites between the two proteins allowed us to create innovative structural models of the NEU1 oligomer and the PPCA-NEU1 heterodimeric complex. The proposed mechanism of interaction between NEU1 and its accessory protein PPCA provides a rationale for the secondary deficiency of NEU1 in galactosialidosis.


Subject(s)
Cathepsin A/chemistry , Cathepsin A/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Neuraminidase/chemistry , Neuraminidase/metabolism , Protein Conformation , Protein Multimerization , Amino Acid Sequence , Animals , Binding Sites , Cathepsin A/genetics , Cells, Cultured , Enzyme Activation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Knockout , Molecular Chaperones/genetics , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutagenesis, Site-Directed , Neuraminidase/genetics
12.
Stem Cell Res ; 46: 101836, 2020 07.
Article in English | MEDLINE | ID: mdl-32485644

ABSTRACT

Sialidosis is an autosomal recessive lysosomal storage disease, belonging to the glycoproteinoses. The disease is caused by deficiency of the sialic acid-cleaving enzyme, sialidase 1 or neuraminidase 1 (NEU1). Patients with sialidosis are classified based on the age of onset and severity of the clinical symptoms into type I (normomorphic) and type II (dysmorphic). Patient-derived skin fibroblasts from both disease types were reprogrammed using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit. iPSCs were characterized for pluripotency, three germ-layer differentiation, normal karyotype and absence of viral components. These cell lines represent a valuable resource to model sialidosis and to screen for therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Mucolipidoses , Cell Differentiation , Fibroblasts , Humans , Mucolipidoses/genetics , Mutation , Neuraminidase/genetics
13.
J Clin Med ; 9(3)2020 03 04.
Article in English | MEDLINE | ID: mdl-32143456

ABSTRACT

Congenital deficiency of the lysosomal sialidase neuraminidase 1 (NEU1) causes the lysosomal storage disease, sialidosis, characterized by impaired processing/degradation of sialo-glycoproteins and sialo-oligosaccharides, and accumulation of sialylated metabolites in tissues and body fluids. Sialidosis is considered an ultra-rare clinical condition and falls into the category of the so-called orphan diseases, for which no therapy is currently available. In this study we aimed to identify potential therapeutic modalities, targeting primarily patients affected by type I sialidosis, the attenuated form of the disease. We tested the beneficial effects of a recombinant protective protein/cathepsin A (PPCA), the natural chaperone of NEU1, as well as pharmacological and dietary compounds on the residual activity of mutant NEU1 in a cohort of patients' primary fibroblasts. We observed a small, but consistent increase in NEU1 activity, following administration of all therapeutic agents in most of the fibroblasts tested. Interestingly, dietary supplementation of betaine, a natural amino acid derivative, in mouse models with residual NEU1 activity mimicking type I sialidosis, increased the levels of mutant NEU1 and resolved the oligosacchariduria. Overall these findings suggest that carefully balanced, unconventional dietary compounds in combination with conventional therapeutic approaches may prove to be beneficial for the treatment of sialidosis type I.

14.
Dev Cell ; 6(2): 269-82, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14960280

ABSTRACT

The identities of the ubiquitin-ligases active during myogenesis are largely unknown. Here we describe a RING-type E3 ligase complex specified by the adaptor protein, Ozz, a novel SOCS protein that is developmentally regulated and expressed exclusively in striated muscle. In mice, the absence of Ozz results in overt maturation defects of the sarcomeric apparatus. We identified beta-catenin as one of the target substrates of the Ozz-E3 in vivo. In the differentiating myofibers, Ozz-E3 regulates the levels of sarcolemma-associated beta-catenin by mediating its degradation via the proteasome. Expression of beta-catenin mutants that reduce the binding of Ozz to endogenous beta-catenin leads to Mb-beta-catenin accumulation and myofibrillogenesis defects similar to those observed in Ozz null myocytes. These findings reveal a novel mechanism of regulation of Mb-beta-catenin and the role of this pool of the protein in myofibrillogenesis, and implicate the Ozz-E3 ligase in the process of myofiber differentiation.


Subject(s)
Cytoskeletal Proteins/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Phenylalanine/analogs & derivatives , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Aging , Animals , Blotting, Northern , Blotting, Western , Cells, Cultured , Embryo, Mammalian , Epoxy Compounds/metabolism , Gene Expression Regulation, Developmental , Heart , Humans , Immunohistochemistry , In Vitro Techniques , Mice , Mice, Knockout , Microscopy, Electron , Muscle Development/genetics , Muscle, Skeletal/abnormalities , Muscle, Skeletal/embryology , Muscle, Skeletal/ultrastructure , Mutation , Myoblasts/metabolism , Myoblasts/ultrastructure , Myogenin/metabolism , Phenylalanine/genetics , Phenylalanine/metabolism , Precipitin Tests , Repressor Proteins/metabolism , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Staining and Labeling , Subcellular Fractions/metabolism , Tenascin/metabolism , Ubiquitin-Protein Ligase Complexes , Ubiquitins/metabolism , beta Catenin
15.
Sci Adv ; 5(7): eaav3270, 2019 07.
Article in English | MEDLINE | ID: mdl-31328155

ABSTRACT

Lysosomal exocytosis is a ubiquitous process negatively regulated by neuraminidase 1 (NEU1), a sialidase mutated in the glycoprotein storage disease sialidosis. In Neu1-/- mice, excessive lysosomal exocytosis is at the basis of disease pathogenesis. Yet, the tissue-specific molecular consequences of this deregulated pathway are still unfolding. We now report that in muscle connective tissue, Neu1-/- fibroblasts have features of myofibroblasts and are proliferative, migratory, and exocytose large amounts of exosomes. These nanocarriers loaded with activated transforming growth factor-ß and wingless-related integration site (WNT)/ß-catenin signaling molecules propagate fibrotic signals to other cells, maintaining the tissue in a prolonged transitional status. Myofibroblast-derived exosomes fed to normal fibroblasts convert them into myofibroblasts, changing the recipient cells' proliferative and migratory properties. These findings reveal an unexpected exosome-mediated signaling pathway downstream of NEU1 deficiency that propagates a fibrotic disease and could be implicated in idiopathic forms of fibrosis in humans.


Subject(s)
Disease Susceptibility , Exosomes/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Lysosomes/metabolism , Signal Transduction , Animals , Biomarkers , Dependovirus/genetics , Disease Models, Animal , Exocytosis , Fibroblasts/metabolism , Fibrosis/pathology , Fibrosis/therapy , Gene Transfer Techniques , Genetic Therapy , Humans , Immunohistochemistry , Mice , Mucolipidoses , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
16.
Nat Commun ; 10(1): 3623, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399583

ABSTRACT

Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.


Subject(s)
Autophagy/physiology , Epigenesis, Genetic , Lysosomes/metabolism , Organelle Biogenesis , Polytetrafluoroethylene/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Histone Deacetylase 2/metabolism , Histone Deacetylases/metabolism , Humans , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/genetics , Stem Cells , Transcription, Genetic
17.
Biochim Biophys Acta Gen Subj ; 1862(12): 2879-2887, 2018 12.
Article in English | MEDLINE | ID: mdl-30251702

ABSTRACT

BACKGROUND: Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization of protein interactions. METHODS: Here, we have used an integrated biochemical-biophysical approach to determine whether S-palmitoylation contributes to the regulation of extracellular vesicle production in skeletal muscle cells. RESULTS: We ascertained that Alix is S-palmitoylated and that this post-translational modification influences its protein-protein interaction with CD9, a member of the tetraspanin protein family. Furthermore, we showed that the structural organization of the lipid bilayer of the small (nano-sized) extracellular vesicle membrane with altered palmitoylation is qualitatively different compared to mock control vesicles. CONCLUSIONS: We propose that S-palmitoylation regulates the function of Alix in facilitating the interactions among extracellular vesicle-specific regulators and maintains the proper structural organization of exosome-like extracellular vesicle membranes. GENERAL SIGNIFICANCE: Beyond its biological relevance, our study also provides the means for a comprehensive structural characterization of EVs.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Lipoylation , Protein Processing, Post-Translational , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Humans , Lipid Bilayers , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Protein Binding , Protein Conformation , Protein Transport , Signal Transduction , Tetraspanin 29/metabolism
18.
Nat Commun ; 7: 11876, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27336173

ABSTRACT

Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.


Subject(s)
Actomyosin/metabolism , Blood-Brain Barrier , Calcium-Binding Proteins/physiology , Choroid Plexus/metabolism , Tight Junctions/metabolism , Actins/metabolism , Animals , Cell Polarity , Choroid Plexus/ultrastructure , Ependyma/ultrastructure , Epithelial Cells/ultrastructure , Hydrocephalus/etiology , Mice , Mice, Knockout , Zonula Occludens-1 Protein/metabolism
19.
Genet Test ; 9(2): 126-32, 2005.
Article in English | MEDLINE | ID: mdl-15943552

ABSTRACT

GM1 gangliosidosis is a lysosomal storage disorder caused by deficiency of beta-galactosidase. It is mainly characterized by progressive neurodegeneration, and in its most severe infantile form, it leads to death before the age of 4. The GLB1 gene gives rise to two alternatively spliced mRNAs that encode the beta-galactosidase and the elastin binding protein (EBP). The diagnosis of two patients with the infantile form of GM1 gangliosidosis and 11 carriers in a small mountainous village in Cyprus prompted us to carry out a study in order to establish the frequency of carriers in the village and identify the mutations involved. Carrier detection was initially based on the measurement of beta-galactosidase activity in leucocytes. Among 85 random samples from the village, 10 were classified as carriers. Sequencing of the GLB1 gene in a Cypriot patient identified the missense mutation c.1445G>A (p.Arg482His) in the homozygous state. Seven of the 10 carriers identified using the enzyme assay were found to carry the same mutation by NspI restriction enzyme analysis. The three individuals who were negative for the c.1445G>A had borderline enzyme results and were probably wrongly classified as carriers. The frequency of GM1 gangliosidosis carriers in this village is approximately 8% (1:12). Western blot analysis showed a marked decrease of the 64-kDa mature form of the enzyme protein and a similar reduction of the 67-kDa EBP. Our results indicate that the c.1445G>A mutation, which appears to be responsible for all GM1 gangliosidosis alleles in this Cypriot village, affects protein conformation.


Subject(s)
Amino Acid Substitution , Gangliosidosis, GM1/genetics , Heterozygote , beta-Galactosidase/genetics , Adult , Animals , Arginine/genetics , COS Cells , Chlorocebus aethiops , Cyprus , Female , Fetus , Fluorescent Antibody Technique , Gangliosidosis, GM1/physiopathology , Humans , Infant , Infant, Newborn , Male , Mutation , Pregnancy
20.
J Child Neurol ; 20(1): 57-60, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15791924

ABSTRACT

Two unrelated children and their siblings of Arab origin were diagnosed as having GM1 gangliosidosis on the basis of clinical features and markedly low levels of beta-galactosidase. The T2-weighted magnetic resonance images of the brain revealed certain characteristic features, including delayed myelination and abnormal appearance of the subcortical white matter, internal capsule, and basal ganglia. Their mutation analysis showed two novel mutations, which have not been described in an Arabic population.


Subject(s)
Brain/pathology , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Arabs , Basal Ganglia , Child, Preschool , Consanguinity , DNA Mutational Analysis , Demyelinating Diseases/etiology , Demyelinating Diseases/genetics , Female , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Pedigree , Siblings , beta-Galactosidase
SELECTION OF CITATIONS
SEARCH DETAIL