Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Pharmacol Exp Ther ; 369(2): 223-233, 2019 05.
Article in English | MEDLINE | ID: mdl-30804001

ABSTRACT

We leveraged a clinical pharmacokinetic (PK)/pharmacodynamics (PD)/efficacy relationship established with an oral phosphatidylinositol 3-kinase (PI3K)δ inhibitor (Idelalisib) in a nasal allergen challenge study to determine whether a comparable PK/PD/efficacy relationship with PI3Kδ inhibitors was observed in preclinical respiratory models of type 2 T helper cell (TH2) and type 1 T helper cell (TH1) inflammation. Results from an in vitro rat blood basophil (CD63) activation assay were used as a PD biomarker. IC50 values for PI3Kδ inhibitors, MSD-496486311, MSD-126796721, Idelalisib, and Duvelisib, were 1.2, 4.8, 0.8, and 0.5 µM. In the ovalbumin Brown Norway TH2 pulmonary inflammation model, all PI3Kδ inhibitors produced a dose-dependent inhibition of bronchoalveolar lavage eosinophils (maximum effect between 80% and 99%). In a follow-up experiment designed to investigate PK attributes [maximum (or peak) plasma concentration (Cmax), area under the curve (AUC), time on target (ToT)] that govern PI3Kδ efficacy, MSD-496486311 [3 mg/kg every day (QD) and 100 mg/kg QD] produced 16% and 93% inhibition of eosinophils, whereas doses (20 mg/kg QD, 10 mg/kg twice per day, and 3 mg/kg three times per day) produced 54% to 66% inhibition. Our profiling suggests that impact of PI3Kδ inhibitors on eosinophils is supported by a PK target with a ToT over the course of treatment close to the PD IC50 rather than strictly driven by AUC, Cmax, or Cmin (minimum blood plasma concentration) coverage. Additional studies in an Altenaria alternata rat model, a sheep Ascaris-sensitive sheep model, and a TH1-driven rat ozone exposure model did not challenge our hypothesis, suggesting that an IC50 level of TE (target engagement) sustained for 24 hours is required to produce efficacy in these traditional models. We conclude that the PK/PD observations in our animal models appear to align with clinical results associated with a TH2 airway disease.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/immunology , Th1 Cells/drug effects , Th2 Cells/drug effects , Animals , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Male , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Rats , Respiratory Tract Diseases/metabolism
2.
BMC Musculoskelet Disord ; 15: 409, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25477192

ABSTRACT

BACKGROUND: The impact of anti-TNF, corticosteroid and analgesic therapy on inflammation and pain was evaluated in a novel mono-arthritic multi-flare rat Streptococcal Cell Wall (SCW) model using Etanercept, Dexamethasone and Buprenorphine. METHODS: Multiple flares of arthritis were induced with an intra-articular injection of SCW in the hind ankle on day 1, followed by intravenous challenges on days 21 and 42. Inflammation and pain were monitored in the hind paws. Cytokine profiling, cell phenotyping, bioluminescence imaging and histopathological evaluation were also performed. RESULTS: Local injection of SCW caused a rapid onset of inflammation and pain in the injected ankle which resolved within 4 days (Flare 1). Intravenous injection 20 days after sensitization resulted in an increase in ankle diameter and pain, which partially resolved in 8 days (Flare 2). The subsequent intra-venous injection in the same animals 14 days after resulted in a more chronic disease with inflammation and pain persisting over a period of 10 days (Flare 3). In Flare 2, therapeutic administration of Dexamethasone inhibited paw swelling (95%; P<0.001) and pain (55%; P<0.05). Therapeutic administration of Buprenorphine inhibited pain (80%; P<0.001) without affecting paw swelling (0%). Prophylactic administration of Etanercept in Flare 2 inhibited paw swelling (≥60%; P<0.001) and pain by ≥30%. Expression of IL-1ß, IL-6, MCP-1 and CINC was reduced by >50% (P<0.001). Treatment with Etanercept in Flare 3 inhibited paw swelling by 60% (P<0.001) and pain by 25%. Prior treatment with Etanercept in Flare 2 followed by re-administration in Flare 3 led to a complete loss in the efficacy of Etanercept. Systemic exposure of Etanercept corroborated with lack of efficacy. Dexamethasone inhibited inflammation and pain in both Flares 2 and 3 (P<0.001). CONCLUSIONS: We established a novel multi-flare SCW arthritis model enabling drug intervention in different stages of disease. We show for the first time the evaluation of inflammation and pain simultaneously in this model. Etanercept and Dexamethasone inhibited inflammation, pain and proinflammatory cytokines in this model. Taken together, this model facilitates the assessment of anti-rheumatic agents targeting inflammation and pain in the multiple flare paradigm and offers a powerful tool for drug discovery.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Cell Wall , Immunoglobulin G/therapeutic use , Pain/drug therapy , Receptors, Tumor Necrosis Factor/therapeutic use , Streptococcus , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Etanercept , Female , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Pain/chemically induced , Pain/pathology , Rats , Rats, Inbred Lew
3.
Am J Respir Cell Mol Biol ; 49(6): 1085-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23889698

ABSTRACT

Spleen tyrosine kinase (SYK) is a key activator of signaling pathways downstream of multiple surface receptors implicated in asthma. SYK function has been extensively studied in mast cells downstream of the high-affinity IgE receptor, FcεR1. Preclinical studies have demonstrated a role for SYK in models of allergic inflammation, but a role in airway constriction has not been demonstrated. Here, we have used a potent and selective pharmacological inhibitor of SYK to determine the role of SYK in allergen-mediated inflammation and airway constriction in preclinical models. Attenuation of allergic airway responses was evaluated in a rat passive anaphylaxis model and rat and sheep inhaled allergen challenge models, as well as an ex vivo model of allergen-mediated airway constriction in rats and cynomolgus monkeys. Pharmacological inhibition of SYK dose-dependently blocked IgE-mediated tracheal plasma extravasation in rats. In a rat ovalbumin-sensitized airway challenge model, oral dosing with an SYK inhibitor led to a dose-dependent reduction in lung inflammatory cells. Ex vivo analysis of allergen-induced airway constriction in ovalbumin-sensitized brown Norway rats showed a complete attenuation with treatment of a SYK inhibitor, as well as a complete block of allergen-induced serotonin release. Similarly, allergen-mediated airway constriction was attenuated in ex vivo studies from nonhuman primate lungs. Intravenous administration of an SYK inhibitor attenuated both early- and late-phase allergen-induced increases in airway resistance in an Ascaris-sensitive sheep allergen challenge model. These data support a key role for SYK signaling in mediating allergic airway responses.


Subject(s)
Allergens/administration & dosage , Asthma/prevention & control , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Ascaris suum/immunology , Asthma/etiology , Asthma/physiopathology , Bronchoconstriction/drug effects , Bronchoconstriction/immunology , Bronchoconstriction/physiology , Cell Degranulation/drug effects , Disease Models, Animal , Humans , Intracellular Signaling Peptides and Proteins/physiology , Macaca fascicularis , Male , Mast Cells/drug effects , Mast Cells/immunology , Ovalbumin/immunology , Protein-Tyrosine Kinases/physiology , Rats , Rats, Inbred BN , Rats, Sprague-Dawley , Sheep , Signal Transduction/drug effects , Syk Kinase
4.
Mol Cancer Ther ; 21(3): 427-439, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34965960

ABSTRACT

Targeting the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway with immunotherapy has revolutionized the treatment of many cancers. Somatic tumor mutational burden (TMB) and T-cell-inflamed gene expression profile (GEP) are clinically validated pan-tumor genomic biomarkers that can predict responsiveness to anti-PD-1/PD-L1 monotherapy in many tumor types. We analyzed the association between these biomarkers and the efficacy of PD-1 inhibitor in 11 commonly used preclinical syngeneic tumor mouse models using murinized rat anti-mouse PD-1 DX400 antibody muDX400, a surrogate for pembrolizumab. Response to muDX400 treatment was broadly classified into three categories: highly responsive, partially responsive, and intrinsically resistant to therapy. Molecular and cellular profiling validated differences in immune cell infiltration and activation in the tumor microenvironment of muDX400-responsive tumors. Baseline and on-treatment genomic analysis showed an association between TMB, murine T-cell-inflamed gene expression profile (murine-GEP), and response to muDX400 treatment. We extended our analysis to investigate a canonical set of cancer and immune biology-related gene signatures, including signatures of angiogenesis, myeloid-derived suppressor cells, and stromal/epithelial-to-mesenchymal transition/TGFß biology previously shown to be inversely associated with the clinical efficacy of immune checkpoint blockade. Finally, we evaluated the association between murine-GEP and preclinical efficacy with standard-of-care chemotherapy or antiangiogenic agents that previously demonstrated promising clinical activity, in combination with muDX400. Our profiling studies begin to elucidate the underlying biological mechanisms of response and resistance to PD-1/PD-L1 blockade represented by these models, thereby providing insight into which models are most appropriate for the evaluation of orthogonal combination strategies.


Subject(s)
B7-H1 Antigen , Immunotherapy , Neoplasms , Programmed Cell Death 1 Receptor , Animals , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , Cell Line, Tumor , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment
5.
J Aerosol Med Pulm Drug Deliv ; 32(5): 251-265, 2019 10.
Article in English | MEDLINE | ID: mdl-31084462

ABSTRACT

Background: A highly potent pan-Janus kinase (JAK) inhibitor with excellent kinome selectivity was developed for topical delivery to treat severe asthma. This poorly soluble drug discovery candidate, iJAK-001, is expected to exhibit long duration of JAK/STAT pathway inhibition at low doses in asthmatics because of depot effect after dry powder inhalation. Human dose projection for inhaled molecules with low aqueous solubility remains to be a daunting challenge because of several limitations: (1) bioanalytical measurement of dissolved fraction after inhalation of solid particles is uncertain; (2) distribution of these particles is not homogenous in the lung; (3) in vitro solubility measurements to estimate fraction dissolved may not be a reflection of local surface lung concentration; (4) lack of a surrogate biomarker of lung target engagement, and (5) invasive procedure needed to sample human lung tissue in the clinic. Methods: We leveraged in silico, in vitro, and in vivo tools preclinically and found significant differences in lung to plasma partition ratio when iJAK-001 was given intravenously (IV) or intratracheally in a solution-based formulation versus that in suspension, as well as pharmacodynamic response in preclinical asthma models when delivered systemically via IV infusion versus inhaled. Results and Conclusion: The combined results from above suggest that caution must be exercised using either lung or plasma exposure for human dose projection. Instead, using the local inhibitor concentration estimate based on delivery efficiency, dose, fraction absorbed, and rate of absorption normalized by lung (cardiac) blood flow may be more appropriate for dose projection.


Subject(s)
Asthma/drug therapy , Janus Kinase Inhibitors/administration & dosage , Lung/metabolism , Administration, Inhalation , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Dry Powder Inhalers , Humans , Janus Kinase Inhibitors/pharmacokinetics , Janus Kinase Inhibitors/pharmacology , Male , Rats , Rats, Inbred BN , Rats, Wistar , Sheep , Solubility , Tissue Distribution
6.
J Aerosol Med Pulm Drug Deliv ; 29(4): 362-77, 2016 08.
Article in English | MEDLINE | ID: mdl-26859446

ABSTRACT

BACKGROUND: Understanding the relationship between dose, lung exposure, and drug efficacy continues to be a challenging aspect of inhaled drug development. An experimental inhalation platform was developed using mometasone furoate to link rodent lung exposure to its in vivo pharmacodynamic (PD) effects. METHODS: We assessed the effect of mometasone delivered directly to the lung in two different rodent PD models of lung inflammation. The data obtained were used to develop and evaluate a mathematical model to estimate drug dissolution, transport, distribution, and efficacy, following inhaled delivery in rodents and humans. RESULTS: Mometasone directly delivered to the lung, in both LPS and Alternaria alternata rat models, resulted in dose dependent inhibition of BALf cellular inflammation. The parameters for our mathematical model were calibrated to describe the observed lung and systemic exposure profiles of mometasone in humans and in animal models. We found that physicochemical properties, such as lung fluid solubility and lipophilicity, strongly influenced compound distribution and lung retention. CONCLUSIONS: Presently, we report on a novel and sophisticated mathematical model leading to improvements in a current inhaled drug development practices by providing a quantitative understanding of the relationship between PD effects and drug concentration in lungs.


Subject(s)
Alternariosis/drug therapy , Anti-Inflammatory Agents/administration & dosage , Drug Dosage Calculations , Lung Diseases, Fungal/drug therapy , Lung/drug effects , Models, Biological , Mometasone Furoate/administration & dosage , Pneumonia/drug therapy , Administration, Inhalation , Aerosols , Alternaria , Alternariosis/metabolism , Alternariosis/microbiology , Alternariosis/physiopathology , Animals , Anti-Inflammatory Agents/pharmacokinetics , Disease Models, Animal , Humans , Lipopolysaccharides , Lung/metabolism , Lung/physiopathology , Lung Diseases, Fungal/metabolism , Lung Diseases, Fungal/microbiology , Lung Diseases, Fungal/physiopathology , Male , Mometasone Furoate/pharmacokinetics , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/physiopathology , Rats, Inbred BN , Rats, Sprague-Dawley , Species Specificity , Tissue Distribution
7.
Eur J Pharmacol ; 743: 106-16, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25261040

ABSTRACT

Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation.


Subject(s)
Alternaria/drug effects , Anti-Inflammatory Agents/pharmacology , Carbolines/pharmacology , Pneumonia/drug therapy , Receptors, Formyl Peptide/metabolism , Th2 Cells/drug effects , Allergens/immunology , Alternaria/immunology , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Cytokines/immunology , Cytokines/metabolism , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-5/immunology , Interleukin-5/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Male , Ovalbumin/immunology , Ovalbumin/pharmacology , Pneumonia/immunology , Pneumonia/metabolism , Rats , Rats, Inbred BN , Receptors, Formyl Peptide/immunology , Th2 Cells/immunology
8.
Eur J Pharmacol ; 718(1-3): 290-8, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24012780

ABSTRACT

Accumulating evidence indicates protective actions of mineralocorticoid antagonists (MR antagonists) on cardiovascular pathology, which includes blunting vascular inflammation and myocardial fibrosis. We examined the anti-inflammatory and anti-fibrotic potential of MR antagonists in rodent respiratory models. In an ovalbumin allergic and challenged Brown Norway rat model, the total cell count in nasal lavage was 29,348 ± 5451, which was blocked by spironolactone (0.3-60 mg/kg, p.o.) and eplerenone (0.3-30 mg/kg, p.o.). We also found that MR antagonists attenuated pulmonary inflammation in the Brown Norway rat. A series of experiments were conducted to determine the actions of MR blockade in acute/chronic lung injury models. (1) Ex vivo lung slice rat experiments found that eplerenone (0.01 and 10 µM) and spironolactone (10 µM) diminished lung hydroxyproline concentrations by 55 ± 5, 122 ± 9, and 83 ± 8%. (2) In in vivo studies, MR antagonists attenuated the increases in bronchioalveolar lavage (BAL) neutrophils and macrophages caused by lung bleomycin exposure. In separate studies, bleomycin (4.0 U/kg, i.t.) increased lung levels of hydroxyproline by approximately 155%, which was blocked by spironolactone (10-60 mg/kg, p.o.). In a rat Lipopolysaccharide (LPS) model, spironolactone inhibited acute increases in BAL cytokines with moderate effects on neutrophils. Finally, we found that chronic LPS exposure significantly increased end expiratory lung and decreased lung elastance in the mouse. These functional effects of chronic LPS were improved by MR antagonists. Our results demonstrate that MR antagonists have significant pharmacological actions in the respiratory system.


Subject(s)
Bleomycin/adverse effects , Mineralocorticoid Receptor Antagonists/pharmacology , Pneumonia/drug therapy , Receptors, Mineralocorticoid/metabolism , Animals , Disease Models, Animal , Elasticity/drug effects , Fibrosis , Hydroxyproline/metabolism , Hypersensitivity/drug therapy , Hypersensitivity/metabolism , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Lipopolysaccharides/adverse effects , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Mice , Mineralocorticoid Receptor Antagonists/therapeutic use , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/physiopathology , Pulmonary Ventilation/drug effects , Rats
9.
Behav Brain Res ; 204(1): 67-76, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19416740

ABSTRACT

Sustained attention is defined as the ability or capacity to remain focused on the occurrence of rare events over long periods of time. We describe here the development of a novel, operant-based attention task that can be learned by mice in 8-10 days. Mice were trained on a 2-choice visual discrimination task in an operant chamber, wherein the correct response on any given trial was a lever-press cued by a stimulus light. Upon reaching a criterion of greater than 80% correct responses, all subjects were tested in a mixed-trial attention paradigm combining four different stimulus durations within a single session (0.5, 1, 2, or 10 s). During attention testing, the percentage of correct responses decreased as a function of stimulus duration, indicating a performance decrement which parallels increasing attentional demand within the task. Pretreatment with the muscarinic-receptor antagonist scopolamine yielded a reliable, dose-dependent performance deficit whereas nicotine treatment improved the percentage of correct responses during trials with the greatest attentional demand. Moreover, medial prefrontal cortex lesions impaired attention performance without affecting acquisition or retention of the discrimination rule. These results underscore the utility of this task as a novel means of assessing attentional processes in mice in a relatively high-throughput manner.


Subject(s)
Attention/physiology , Prefrontal Cortex/physiology , Receptors, Muscarinic/metabolism , Animals , Attention/drug effects , Conditioning, Operant/physiology , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Dose-Response Relationship, Drug , Learning/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Muscarinic Antagonists/pharmacology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Photic Stimulation , Prefrontal Cortex/drug effects , Scopolamine/pharmacology , Time Factors , Visual Perception/drug effects , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL