Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Comput Biol ; 18(2): e1009828, 2022 02.
Article in English | MEDLINE | ID: mdl-35108266

ABSTRACT

The ammonia-oxidizing bacterium Nitrosomonas europaea has been widely recognized as an important player in the nitrogen cycle as well as one of the most abundant members in microbial communities for the treatment of industrial or sewage wastewater. Its natural metabolic versatility and extraordinary ability to degrade environmental pollutants (e.g., aromatic hydrocarbons such as benzene and toluene) enable it to thrive under various harsh environmental conditions. Constraint-based metabolic models constructed from genome sequences enable quantitative insight into the central and specialized metabolism within a target organism. These genome-scale models have been utilized to understand, optimize, and design new strategies for improved bioprocesses. Reduced modeling approaches have been used to elucidate Nitrosomonas europaea metabolism at a pathway level. However, genome-scale knowledge about the simultaneous oxidation of ammonia and pollutant metabolism of N. europaea remains limited. Here, we describe the reconstruction, manual curation, and validation of the genome-scale metabolic model for N. europaea, iGC535. This reconstruction is the most accurate metabolic model for a nitrifying organism to date, reaching an average prediction accuracy of over 90% under several growth conditions. The manually curated model can predict phenotypes under chemolithotrophic and chemolithoorganotrophic conditions while oxidating methane and wastewater pollutants. Calculated flux distributions under different trophic conditions show that several key pathways are affected by the type of carbon source available, including central carbon metabolism and energy production.


Subject(s)
Ammonia/metabolism , Nitrosomonas europaea/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL