ABSTRACT
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
Subject(s)
COVID-19 Drug Treatment , DNA Topoisomerases, Type I/metabolism , SARS-CoV-2/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , COVID-19/enzymology , COVID-19/pathology , Chlorocebus aethiops , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Inflammation/virology , Mesocricetus , Mice , Mice, Transgenic , THP-1 Cells , Vero CellsABSTRACT
In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA1. Rapid dissemination to more than 190 farms in 13 states followed2. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 isolates. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.
ABSTRACT
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Subject(s)
COVID-19 Vaccines , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Aluminum , Angiotensin-Converting Enzyme 2 , Breakthrough Infections , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2ABSTRACT
Caryospora-like organisms (CLOs) form a clade of at least 11 genotypes of related coccidia that can cause epizootic mortality in marine turtles. The biology, transmission, host species range, and host cell tropism of these organisms are still largely unknown. The goal of this study was to characterize the host cell tropism, pathologic and ultrastructural features, and phylogeny associated with the first report of a mortality event due to CLO in the freshwater red-eared slider turtle (Trachemys scripta elegans). Sudden mortalities within a clutch of captive-raised red-eared slider hatchlings (n = 8) were recorded, and deceased animals had severe segmental to diffuse, transmural, fibrinonecrotic enterocolitis and multifocal to coalescing hepatic necrosis, among other lesions associated with numerous intracytoplasmic developing stages of intralesional coccidia. Among the different developmental stages, merozoites were ultrastructurally characterized by an apical complex. A pan-apicomplexan polymerase chain reaction (PCR) yielded a 347 bp-amplicon matching the Schellackia/Caryospora-like clade with 99.1% identity to the US3 strain from green sea turtles (Chelonia mydas) and 99.1% identity to Schellackia sp. Isolate OC116. Surviving hatchlings were treated with toltrazuril sulfone (ponazuril) but were subsequently euthanized due to the risk of spreading the parasite to other chelonids in the collection. The ponazuril-treated hatchlings (n = 4) had mild proliferative anterior enteritis, with few intraepithelial coccidia in one hatchling confirmed as CLO by PCR. This is the first report of Caryospora-like coccidiosis in non-cheloniid turtles, highlighting the relevance of this disease as an emerging highly pathogenic intestinal and extra-intestinal form of coccidiosis of turtles with potential cross-species infectivity.
Subject(s)
Coccidiosis , Turtles , Animals , Turtles/genetics , Coccidiosis/veterinary , Intestines , PhylogenyABSTRACT
Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.
Subject(s)
Genomic Imprinting/genetics , Horses/genetics , Placentation/genetics , Alleles , Animals , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genomic Imprinting/physiology , Horses/metabolism , Placenta/metabolism , PregnancyABSTRACT
The liver is an early systemic target of Ebola virus (EBOV), but characterization beyond routine histopathology and viral antigen distribution is limited. We hypothesized Ebola virus disease (EVD) systemic proinflammatory responses would be reflected in temporally altered liver myeloid phenotypes. We utilized multiplex fluorescent immunohistochemistry (mfIHC), multispectral whole slide imaging, and image analysis to quantify molecular phenotypes of myeloid cells in the liver of rhesus macaques (Macaca mulatta; n = 21) infected with EBOV Kikwit. Liver samples included uninfected controls (n = 3), 3 days postinoculation (DPI; n = 3), 4 DPI (n = 3), 5 DPI (n = 3), 6 DPI (n = 3), and terminal disease (6-8 DPI; n = 6). Alterations in hepatic macrophages occurred at ≥ 5 DPI characterized by a 1.4-fold increase in CD68+ immunoreactivity and a transition from primarily CD14-CD16+ to CD14+CD16- macrophages, with a 2.1-fold decrease in CD163 expression in terminal animals compared with uninfected controls. An increase in the neutrophil chemoattractant and alarmin S100A9 occurred within hepatic myeloid cells at 5 DPI, followed by rapid neutrophil influx at ≥ 6 DPI. An acute rise in the antiviral myxovirus resistance protein 1 (MxA) occurred at ≥ 4 DPI, with a predilection for enhanced expression in uninfected cells. Distinctive expression of major histocompatibility complex (MHC) class II was observed in hepatocytes during terminal disease. Results illustrate that EBOV causes macrophage phenotype alterations as well as neutrophil influx and prominent activation of interferon host responses in the liver. Results offer insight into potential therapeutic strategies to prevent and/or modulate the host proinflammatory response to normalize hepatic myeloid functionality.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Hemorrhagic Fever, Ebola/veterinary , Hemorrhagic Fever, Ebola/pathology , Ebolavirus/physiology , Macaca mulatta , Liver/pathology , PhenotypeABSTRACT
Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8+ T cells and less dependent on CD4+ T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers.IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8+ T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies.
Subject(s)
Herpesvirus 1, Human/genetics , Lung Neoplasms/prevention & control , Melanoma, Experimental/prevention & control , Oncolytic Virotherapy/methods , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Female , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BLABSTRACT
Chlamydia spp are reported to causes systemic disease in a variety of hosts worldwide including few reports in crocodilians. Disease presentations vary from asymptomatic to fulminant disease, some of which are zoonotic. The aim of this study was to describe the pathological, immunohistochemical, and molecular findings associated with the occurrence of a previously unreported Chlamydia sp infection causing a major mortality event in farmed American alligators (Alligator mississippiensis). The outbreak presented with sudden death in juvenile alligators mainly associated with necrotizing hepatitis and myocarditis, followed by the occurrence of conjunctivitis after the initial high mortality event. The widespread inflammatory lesions in multiple organs correlated with intralesional chlamydial organisms identified via immunohistochemistry and confirmed by 23S rRNA-specific real-time quantitative polymerase chain reaction (qPCR) for Chlamydiaceae bacteria. By sequencing and phylogenetic analysis of the OmpA gene, this uncultured Chlamydia sp grouped closely with Chlamydia poikilothermis recently described in snakes. This study highlights the significance of such outbreaks in farmed populations. Enhanced epidemiological monitoring is needed to gain further insight into the biology of Chlamydia sp in alligators, disease dynamics, risk factors, and role of carrier animals.
Subject(s)
Alligators and Crocodiles , Chlamydia Infections , Chlamydia , Animals , Chlamydia/genetics , Chlamydia Infections/epidemiology , Chlamydia Infections/microbiology , Chlamydia Infections/veterinary , Disease Outbreaks/veterinary , PhylogenyABSTRACT
OBJECTIVE: To compare blind and endoscopic-guided techniques for orotracheal intubation in rabbits and the number of intubation attempts with laryngeal/tracheal damage. STUDY DESIGN: Prospective, randomized experimental study. ANIMALS: A total of 24 healthy, intact female New Zealand White rabbits, weighing 2.2 ± 0.2 kg (mean ± standard deviation). METHODS: Rabbits were randomly assigned to blind (group B) or endoscopic-guided (group E) orotracheal intubation with a 2.0 mm internal diameter uncuffed tube. Intramuscular (IM) alfaxalone (7 mg kg-1), hydromorphone (0.1 mg kg-1) and dexmedetomidine (0.005 mg kg-1) were administered, and additional IM alfaxalone (3-5 mg kg-1) and dexmedetomidine (0.025 mg kg-1) were administered to rabbits with strong jaw tone. An intubation attempt was defined as the advancement of the endotracheal tube from the incisors to the laryngeal entrance. Tracheal intubation was confirmed via capnography and anesthesia was maintained with isoflurane for 2 hours. Following euthanasia, laryngeal and tracheal tissues were submitted for histopathology. Quality of anesthesia for orotracheal intubation, intubation procedure and tissue damage were numerically scored. Data were analyzed using Poisson regression, Spearman's correlation, t test, mixed anova, Mann-Whitney U test, Friedman and Chi square tests as appropriate. RESULTS: Median (range) intubation attempts were 2 (1-8) and 1 (1-3) for groups B and E, respectively. More rabbits in group E (91.6%) required additional alfaxalone and dexmedetomidine than in group B (16.7%). Median (range) cumulative histopathology scores were 6 (3-10) and 6 (2-9) for groups B and E, respectively. Scores were highest in the cranial trachea, but there was no difference between groups and no correlation between laryngeal/tracheal damage and the number of intubation attempts. CONCLUSIONS AND CLINICAL RELEVANCE: Both orotracheal intubation techniques were associated with laryngeal/tracheal damage. Although blind orotracheal intubation was associated with a higher number of attempts, the tissue damage was similar between groups.
Subject(s)
Dexmedetomidine , Laryngeal Masks , Larynx , Animals , Dexmedetomidine/pharmacology , Female , Intubation, Intratracheal/methods , Intubation, Intratracheal/veterinary , Laryngeal Masks/veterinary , Prospective Studies , Rabbits , Trachea/surgeryABSTRACT
RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.
Subject(s)
Horses/physiology , Placenta/physiology , Pregnancy Proteins/genetics , Animals , Female , Horses/genetics , Pregnancy , Pregnancy Proteins/metabolismABSTRACT
Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Equartevirus/immunology , Equartevirus/pathogenicity , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/veterinary , Carrier State/immunology , Carrier State/veterinary , Carrier State/virology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Gene Expression Profiling , Genitalia, Male/immunology , Genitalia, Male/pathology , Genitalia, Male/virology , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Male , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Receptors, Virus/immunology , Transcription Factors/immunology , Virus Shedding/genetics , Virus Shedding/immunologyABSTRACT
OBJECTIVE: To evaluate the efficacy of bovine amniotic membrane homogenate (BAMH) on wounded ex vivo rabbit corneas. PROCEDURE: Eighteen corneas obtained from normal rabbit eyes were wounded equally using a 6 mm trephine and cultured into an air-liquid interface model. Corneas were treated with phosphate-buffered saline (PBS) (n = 6, control group), 0.2% ethylenediaminetetraacetic acid (EDTA; n = 6), or BAMH (n = 6). All treatments were applied topically 6 times/day. Each cornea was macrophotographed daily with and without fluorescein stain to assess epithelialization and haziness. After 7 days, corneal transparency was evaluated, and the tissues prepared for histologic analysis of viability, and total and epithelial thickness. RESULTS: The mean epithelialization time was 6.2 ± 0.82 days for the control group, 6.2 ± 0.75 days for the EDTA-treated group, and 5.1 ± 0.40 days for the BAMH-treated group, demonstrating a significant difference between the BAMH and the other groups. The corneas that received EDTA had better transparency compared with the other groups. Histologically, all corneas had adequate morphology and architecture after healing. Analysis of corneal and epithelial thickness revealed no significant difference among groups. CONCLUSION: Bovine amniotic membrane homogenate is an effective and promising treatment for stromal and epithelial ulcers.
Subject(s)
Amnion , Corneal Injuries/therapy , Wound Healing , Animals , Biological Therapy , Cattle , Corneal Injuries/pathology , Organ Culture Techniques , RabbitsABSTRACT
In August 2018, a series of large fish kills involving only Silver Carp Hypophthalmichthys molitrix occurred on the Mississippi River in northern Louisiana. Clinical signs observed in moribund animals included erratic swimming behavior, such as spiraling and spinning at the surface. A moribund specimen was captured by dip net near the surface at Lake Providence Landing in East Carroll Parish, northern Louisiana, and was submitted for analysis. An aseptic necropsy was performed, and diagnostic procedures, including bacteriology, parasitology, histopathology, virology, and electron microscopy, revealed that a gram-positive coccus was the primary pathogen. Pure cultures of the organism were obtained from the brain, and it was the predominant colony type isolated from the spleen, kidney, and liver. Bacterial sepsis caused by the gram-positive coccus and involving multiple organ systems was diagnosed histologically. Bacterial colonization and necrotic lesions were seen in the spleen, liver, kidney, heart, eye, and brain. Numerous cocci were observed dividing intracellularly in phagocytic cells of the kidney and brain by transmission electron microscopy. The organism was identified as Streptococcus dysgalactiae ssp. dysgalactiae by conventional biochemical methods and subsequently by the API 20 Strep system. The identity of the pathogen was later confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and sequencing of the 16S ribosomal RNA gene. Multilocus sequence analysis clustered this isolate along with two other S. dysgalactiae isolates from fish in a divergent phyletic group that was separate from other S. dysgalactiae ssp. dysgalactiae isolates from terrestrial animals, implying a possible novel clade that is pathogenic for fish.
Subject(s)
Carps , Streptococcal Infections , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , StreptococcusABSTRACT
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a reproductive and respiratory disease of horses. Following natural infection, 10 to 70% of infected stallions can become carriers of EAV and continue to shed virus in the semen. In this study, sequential viruses isolated from nasal secretions, buffy coat cells, and semen of seven experimentally infected and two naturally infected EAV carrier stallions were deep sequenced to elucidate the intrahost microevolutionary process after a single transmission event. Analysis of variants from nasal secretions and buffy coat cells lacked extensive positive selection; however, characteristics of the mutant spectra were different in the two sample types. In contrast, the initial semen virus populations during acute infection have undergone a selective bottleneck, as reflected by the reduction in population size and diversifying selection at multiple sites in the viral genome. Furthermore, during persistent infection, extensive genome-wide purifying selection shaped variant diversity in the stallion reproductive tract. Overall, the nonstochastic nature of EAV evolution during persistent infection was driven by active intrahost selection pressure. Among the open reading frames within the viral genome, ORF3, ORF5, and the nsp2-coding region of ORF1a accumulated the majority of nucleotide substitutions during persistence, with ORF3 and ORF5 having the highest intrahost evolutionary rates. The findings presented here provide a novel insight into the evolutionary mechanisms of EAV and identified critical regions of the viral genome likely associated with the establishment and maintenance of persistent infection in the stallion reproductive tract.IMPORTANCE EAV can persist in the reproductive tract of infected stallions, and consequently, long-term carrier stallions constitute its sole natural reservoir. Previous studies demonstrated that the ampullae of the vas deferens are the primary site of viral persistence in the stallion reproductive tract and the persistence is associated with a significant inflammatory response that is unable to clear the infection. This is the first study that describes EAV full-length genomic evolution during acute and long-term persistent infection in the stallion reproductive tract using next-generation sequencing and contemporary sequence analysis techniques. The data provide novel insight into the intrahost evolution of EAV during acute and persistent infection and demonstrate that persistent infection is characterized by extensive genome-wide purifying selection and a nonstochastic evolutionary pattern mediated by intrahost selective pressure, with important nucleotide substitutions occurring in ORF1a (region encoding nsp2), ORF3, and ORF5.
Subject(s)
Arterivirus Infections/genetics , Equartevirus/genetics , Host-Pathogen Interactions/genetics , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/virology , Base Sequence/genetics , Carrier State/virology , Equartevirus/metabolism , Equartevirus/pathogenicity , Evolution, Molecular , Genome, Viral/genetics , Horse Diseases/virology , Horses/genetics , Male , Open Reading Frames/genetics , Phylogeny , Semen/virology , Sequence Analysis/methodsABSTRACT
In situ hybridization (ISH) and immunohistochemistry (IHC) are essential tools to characterize SARS-CoV-2 infection and tropism in naturally and experimentally infected animals and also for diagnostic purposes. Here, we describe three RNAscope®-based ISH assays targeting the ORF1ab, spike, and nucleocapsid genes and IHC assays targeting the spike and nucleocapsid proteins of SARS-CoV-2.
Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Animals , Antibodies, Monoclonal , Antibodies, Viral , Antisense Elements (Genetics)/genetics , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Genes, Viral , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolismABSTRACT
Equine arteritis virus (EAV) can establish long-term persistent infection in the reproductive tract of stallions and is shed in the semen. Previous studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistent infection is maintained despite the presence of a local inflammatory and humoral and mucosal antibody responses. In this study, we demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of microRNAs (miRNAs). Most importantly, we demonstrated that long-term EAV persistence is associated with the downregulation of an SE-associated miRNA (eca-mir-128) and with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. The findings presented here suggest that SE eca-mir-128 is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. This is a novel finding and warrants further investigation to identify its specific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of the EAV long-term carrier stallion.IMPORTANCE Equine arteritis virus (EAV) has the ability to establish long-term persistent infection in the stallion reproductive tract and to be shed in semen, which jeopardizes its worldwide control. Currently, the molecular mechanisms of viral persistence are being unraveled, and these are essential for the development of effective therapeutics to eliminate persistent infection. Recently, it has been determined that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and is maintained despite induction of local inflammatory, humoral, and mucosal antibody responses. This study demonstrated that long-term persistence is associated with the downregulation of seminal exosome miRNA eca-mir-128 and enhanced expression of its putative target, CXCL16, in the reproductive tract. For the first time, this study suggests complex interactions between eca-mir-128 and cellular elements at the site of EAV persistence and implicates this miRNA in the regulation of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence.
Subject(s)
Arterivirus Infections/veterinary , Chemokine CXCL16/biosynthesis , Equartevirus/physiology , Exosomes/genetics , Horse Diseases/virology , MicroRNAs/biosynthesis , Receptors, CXCR6/biosynthesis , Semen/cytology , Animals , Arterivirus Infections/virology , Down-Regulation/genetics , Genitalia, Male/metabolism , Genitalia, Male/virology , Horses , Male , MicroRNAs/geneticsABSTRACT
BACKGROUND: Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and has a negative impact on equine breeding enterprises worldwide. Among ERVA strains infecting foals, the genotypes G3P[12] and G14P[12] are the most prevalent, while infections by strains with other genomic arrangements are infrequent. The identification of circulating strains of ERVA is critical for diagnostic and surveillance purposes, as well as to understand their molecular epidemiology. Current genotyping methods available for ERVA and rotaviruses affecting other animal species rely on Sanger sequencing and are significantly time-consuming, costly and labor intensive. Here, we developed the first one-step multiplex TaqMan® real-time reverse transcription polymerase chain reaction (RT-qPCR) assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes for the rapid detection and G-typing directly from fecal specimens. METHODS: A one-step multiplex TaqMan® RT-qPCR assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes was designed. The analytical sensitivity was assessed using serial dilutions of in vitro transcribed RNA containing the target sequences while the analytical specificity was determined using RNA and DNA derived from a panel of group A rotaviruses along with other equine viruses and bacteria. The clinical performance of this multiplex assay was evaluated using a panel of 177 fecal samples and compared to a VP7-specific standard RT-PCR assay and Sanger sequencing. Limits of detection (LOD), sensitivity, specificity, and agreement were determined. RESULTS: The multiplex G3 and G14 VP7 assays demonstrated high specificity and efficiency, with perfect linearity. A 100-fold difference in their analytical sensitivity was observed when compared to the singleplex assays; however, this difference did not have an impact on the clinical performance. Clinical performance of the multiplex RT-qPCR assay demonstrated that this assay had a high sensitivity/specificity for every target (100% for NSP3, > 90% for G3 VP7 and > 99% for G14 VP7, respectively) and high overall agreement (> 98%) compared to conventional RT-PCR and sequencing. CONCLUSIONS: This new multiplex RT-qPCR assay constitutes a useful, very reliable tool that could significantly aid in the rapid detection and G-typing of ERVA strains circulating in the field.
Subject(s)
Feces/virology , Genotyping Techniques , Multiplex Polymerase Chain Reaction/methods , Rotavirus Infections/veterinary , Rotavirus/genetics , Rotavirus/isolation & purification , Animals , Antigens, Viral/genetics , Capsid Proteins/genetics , Diarrhea/virology , Genome, Viral , Genotype , Horse Diseases/diagnosis , Horse Diseases/virology , Horses , Multiplex Polymerase Chain Reaction/standards , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Rotavirus Infections/diagnosis , Sensitivity and Specificity , Viral Nonstructural Proteins/geneticsABSTRACT
Equine chromosome 24 microRNA cluster (C24MC), the ortholog of human C14MC, is a pregnancy-related miRNA cluster. This cluster is believed to be implicated in embryonic, fetal, and placental development. The current study aimed to characterize the expression profile of this cluster in maternal circulation throughout equine gestation. The expression profile of miRNAs belonging to this cluster was analyzed in the serum of non-pregnant (diestrus), pregnant (25 d, 45 d, 4 mo, 6 mo, 10 mo), and postpartum mares. Among the miRNAs examined, 11 miRNAs were differentially expressed across the analyzed time-points. Four of these miRNAs (eca-miR-1247-3p, eca-miR-134-5p, eca-miR-382-5p, and eca-miR-433-3p) were found to be enriched in the serum of pregnant mares at Day 25 relative to non-pregnant mares. To further assess the accuracy of these miRNAs in differentiating pregnant (25 d) from non-pregnant mares, receiver operating characteristic (ROC) analysis was performed for each of these miRNAs, revealing that eca-miR-1247-3p and eca-miR-134-5p had the highest accuracy (AUCROC = 0.92 and 0.91, respectively; p < 0.05). Moreover, eca-miR-1247-3p, eca-miR-134-5p, eca-miR-409-3p, and eca-miR-379-5p were enriched in the serum of Day 45 pregnant mares. Among those miRNAs, eca-miR-1247-3p and eca-miR-409-3p retained the highest accuracy as shown by ROC analysis. GO analysis revealed that these miRNAs are mainly implicated in nervous system development as well as organ development. Using in situ hybridization, we localized eca-miR-409-3p in the developing embryo (25 d) and extra-embryonic membranes (25 and 45 d). In conclusion, the present study is the first to elucidate the circulating maternal profile of C24MC-associated miRNAs throughout pregnancy and to suggest that serum eca-miR-1247-3p, eca-miR-134-5p, and eca-miR-409-3p could be used as pregnancy-specific markers during early gestation (25 and 45 d). Overall, the high abundance of these embryo-derived miRNAs in the maternal circulation suggests an embryo-maternal communication during the equine early pregnancy.
Subject(s)
Chromosomes, Mammalian/metabolism , Circulating MicroRNA/blood , Gene Expression Regulation/physiology , Multigene Family , Pregnancy/blood , Animals , Female , HorsesABSTRACT
BACKGROUND: The human chromosome 14 microRNA cluster (C14MC) is a conserved microRNA (miRNA) cluster across eutherian mammals, reported to play an important role in placental development. However, the expression kinetics and function of this cluster in the mammalian placenta are poorly understood. Here, we evaluated the expression kinetics of the equine C24MC, ortholog to the human C14MC, in the chorioallantoic membrane during the course of gestation. RESULTS: We demonstrated that C24MC-associated miRNAs presented a higher expression level during early stages of pregnancy, followed by a decline later in gestation. Evaluation of one member of C24MC (miR-409-3p) by in situ hybridization demonstrated that its cellular localization predominantly involved the chorion and allantoic epithelium and vascular endothelium. Additionally, expression of predicted target transcripts for C24MC-associated miRNAs was evaluated by RNA sequencing. Expression analysis of a subset of predicted mRNA targets showed a negative correlation with C24MC-associated miRNAs expression levels during gestation, suggesting the reciprocal control of these target transcripts by this miRNA cluster. Predicted functional analysis of these target mRNAs indicated enrichment of biological pathways related to embryonic development, endothelial cell migration and angiogenesis. Expression patterns of selected target mRNAs involved in angiogenesis were confirmed by RT-qPCR. CONCLUSION: This is the first report evaluating C24MC kinetics during pregnancy. The findings presented herein suggest that the C24MC may modulate angiogenic transcriptional profiles during placental development in the horse.
Subject(s)
Chorioallantoic Membrane/metabolism , Chromosomes, Human, Pair 14 , Gene Expression Profiling/veterinary , Horses , MicroRNAs/genetics , Placentation , Animals , Chorioallantoic Membrane/growth & development , Female , Humans , Kinetics , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , TranscriptomeABSTRACT
Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.