Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653235

ABSTRACT

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Subject(s)
COVID-19 , Immune Evasion , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , COVID-19/immunology , COVID-19/virology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Animals , Cytotoxicity, Immunologic , Down-Regulation , Lung/immunology , Lung/virology , Lung/pathology
2.
Cell ; 185(6): 1041-1051.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202566

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. In this study, we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and revealed that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment potentially due to escape from HLA binding. Booster vaccination enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

3.
Cell ; 184(17): 4401-4413.e10, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34265281

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8+ T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated. Evaluation of HLA class I stabilizing activity for 18 globally prevalent alleles identifies CD8+ T cell epitopes within highly networked regions with limited mutational frequencies in circulating SARS-CoV-2 variants and deep-sequenced primary isolates. Moreover, these epitopes elicit demonstrable CD8+ T cell reactivity in convalescent individuals but reduced recognition in recipients of mRNA-based vaccines. These data thereby elucidate key mutationally constrained regions and immunogenic epitopes in the SARS-CoV-2 proteome for a global T-cell-based vaccine against emerging variants and SARS-like coronaviruses.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , HLA Antigens/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171305

ABSTRACT

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Open Reading Frames/genetics , Peptides/immunology , Proteome/immunology , SARS-CoV-2/immunology , A549 Cells , Alleles , Amino Acid Sequence , Animals , Antigen Presentation/immunology , COVID-19/immunology , COVID-19/virology , Female , HEK293 Cells , Humans , Kinetics , Male , Mice , Peptides/chemistry , T-Lymphocytes/immunology
5.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Article in English | MEDLINE | ID: mdl-37264229

ABSTRACT

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Subject(s)
Killer Cells, Natural , Protein Sorting Signals , Humans , Histocompatibility Antigens Class I , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Lectins, C-Type/metabolism , Receptors, Natural Killer Cell/metabolism , HLA-E Antigens
6.
Annu Rev Immunol ; 29: 295-317, 2011.
Article in English | MEDLINE | ID: mdl-21219175

ABSTRACT

Multiple epidemiological studies have demonstrated associations between the human leukocyte antigen (HLA) loci and human immunodeficiency virus (HIV) disease, and more recently the killer cell immunoglobulin-like (KIR) locus has been implicated in differential responses to the virus. Genome-wide association studies have convincingly shown that the HLA class I locus is the most significant host genetic contributor to the variation in HIV control, underscoring a central role for CD8 T cells in resistance to the virus. However, both genetic and functional data indicate that part of the HLA effect on HIV is due to interactions between KIR and HLA genes, also implicating natural killer cells in defense against viral infection and viral expansion prior to initiation of an adaptive response. We review the HLA and KIR associations with HIV disease and the progress that has been made in understanding the mechanisms that explain these associations.


Subject(s)
HIV Infections/immunology , HIV-1 , HLA Antigens/immunology , Receptors, KIR/immunology , Animals , Humans , T-Lymphocytes/immunology
8.
Nat Immunol ; 20(9): 1129-1137, 2019 09.
Article in English | MEDLINE | ID: mdl-31358998

ABSTRACT

Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.


Subject(s)
HLA-DP Antigens/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 2/immunology , Cell Line , Graft vs Host Disease/immunology , Hepatitis B/immunology , Humans , Inflammatory Bowel Diseases/immunology , Jurkat Cells
10.
Nat Immunol ; 20(7): 824-834, 2019 07.
Article in English | MEDLINE | ID: mdl-31209403

ABSTRACT

Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4+ T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3' untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4+ T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression.


Subject(s)
Gene Expression Regulation , Genetic Variation , HIV Infections/genetics , HIV Infections/virology , HIV-1 , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Receptors, CCR5/genetics , 3' Untranslated Regions , Alleles , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Membrane/metabolism , Genes, Reporter , Genotype , HIV Infections/metabolism , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Population Groups/genetics , Prognosis , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR5/metabolism , Viral Load
11.
Nature ; 620(7976): 1025-1030, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532928

ABSTRACT

HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.


Subject(s)
DNA Helicases , DNA-Binding Proteins , Genetic Variation , HIV Infections , HIV-1 , Viral Load , Humans , Cell Line , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HIV Infections/genetics , HIV-1/growth & development , HIV-1/physiology , Viral Load/genetics , Africa , Chromosomes, Human, Pair 1/genetics , Alleles , RNA, Long Noncoding/genetics , Virus Replication
12.
Nat Immunol ; 17(9): 1067-74, 2016 09.
Article in English | MEDLINE | ID: mdl-27455421

ABSTRACT

The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/physiology , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/immunology , Receptors, KIR3DS1/metabolism , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Progression , Histocompatibility Antigens Class I/genetics , Humans , Immune Evasion , Jurkat Cells , Ligands , Lymphocyte Activation , Primary Cell Culture , Receptors, KIR3DS1/agonists , Receptors, KIR3DS1/genetics , Virus Latency , Virus Replication
13.
Am J Hum Genet ; 111(3): 544-561, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38307027

ABSTRACT

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Chromosome Aberrations , Telomere/genetics , DNA
14.
Nat Immunol ; 16(6): 577-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25988890

ABSTRACT

The outcome after infection with the human immunodeficiency virus type 1 (HIV-1) is a complex phenotype determined by interactions among the pathogen, the human host and the surrounding environment. An impact of host genetic variation on HIV-1 susceptibility was identified early in the pandemic, with a major role attributed to the genes encoding class I human leukocyte antigens (HLA) and the chemokine receptor CCR5. Studies using genome-wide data sets have underscored the strength of these associations relative to variants located throughout the rest of the genome. However, the extent to which additional polymorphisms influence HIV-1 disease progression, and how much of the variability in outcome can be attributed to host genetics, remain largely unclear. Here we discuss findings concerning the functional impact of associated variants, outline methods for quantifying the host genetic component and examine how available genome-wide data sets may be leveraged to discover gene variants that affect the outcome of HIV-1 infection.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA Antigens/genetics , Host-Pathogen Interactions/genetics , Receptors, CCR5/genetics , Animals , Disease Progression , Gene-Environment Interaction , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , HIV Infections/genetics , Humans
15.
Nature ; 597(7875): 279-284, 2021 09.
Article in English | MEDLINE | ID: mdl-34471285

ABSTRACT

T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.


Subject(s)
Alphapapillomavirus/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/metabolism , Stem Cells/cytology , Alphapapillomavirus/isolation & purification , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Cell Differentiation , Cell Proliferation , DNA-Binding Proteins/immunology , Humans , Lymphocytes, Tumor-Infiltrating/classification , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/metabolism , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , RNA-Seq , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Stem Cells/immunology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/immunology , Transcription, Genetic
16.
Nat Immunol ; 15(1): 72-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24241692

ABSTRACT

IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.


Subject(s)
AU Rich Elements/genetics , Interleukins/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , RNA Stability/genetics , 3' Untranslated Regions/genetics , Base Sequence , Cell Line, Tumor , Flow Cytometry , Genotype , Hep G2 Cells , Hepacivirus/physiology , Hepatitis C/genetics , Hepatitis C/virology , Host-Pathogen Interactions , Humans , Interferons , Interleukins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/virology , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
17.
Nature ; 585(7824): 261-267, 2020 09.
Article in English | MEDLINE | ID: mdl-32848246

ABSTRACT

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Subject(s)
Gene Silencing , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Heterochromatin/genetics , Proviruses/genetics , Virus Integration/genetics , Virus Latency/genetics , Adult , Aged , Centromere/genetics , Chromosomes, Human, Pair 19/genetics , DNA, Satellite/genetics , Female , Genome, Viral/genetics , HIV Infections/blood , HIV-1/isolation & purification , Heterochromatin/metabolism , Humans , Male , Middle Aged , Proviruses/isolation & purification , Repressor Proteins/genetics , Transcription Initiation Site
18.
Proc Natl Acad Sci U S A ; 120(11): e2218960120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36877848

ABSTRACT

HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Humans , Killer Cells, Natural , Lymphocyte Activation , RNA , HIV Infections/drug therapy , HIV Infections/immunology , Viremia
19.
Am J Hum Genet ; 109(2): 299-310, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35090584

ABSTRACT

Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQß1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQß1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQß1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQß1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQß1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.


Subject(s)
HLA-DQ beta-Chains/genetics , Hepacivirus/pathogenicity , Hepatitis C/genetics , Host-Pathogen Interactions/genetics , Polymorphism, Single Nucleotide , Acute Disease , Alleles , Amino Acid Substitution , Black People , Female , Gene Expression , Genome-Wide Association Study , Genotype , HLA-DQ beta-Chains/immunology , Hepacivirus/growth & development , Hepacivirus/immunology , Hepatitis C/ethnology , Hepatitis C/immunology , Hepatitis C/virology , Host-Pathogen Interactions/immunology , Humans , Leucine/immunology , Leucine/metabolism , Male , Proline/immunology , Proline/metabolism , Protein Isoforms/genetics , Protein Isoforms/immunology , Remission, Spontaneous , White People
20.
J Immunol ; 211(9): 1298-1307, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37737643

ABSTRACT

The extreme polymorphisms of HLA class I proteins result in structural variations in their peptide binding sites to achieve diversity in Ag presentation. External factors could independently constrict or alter HLA class I peptide repertoires. Such effects of the assembly factor tapasin were assessed for HLA-B*44:05 (Y116) and a close variant, HLA-B*44:02 (D116), which have low and high tapasin dependence, respectively, for their cell surface expression. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with C-terminal tryptophans and higher predicted affinities are preferentially selected by tapasin, coincident with reduced frequencies of peptides with other C-terminal amino acids, including leucine. Comparisons of the HLA-B*44:05 and HLA-B*44:02 peptidomes indicate the expected structure-based alterations near the peptide C termini, but also C-terminal amino acid frequency and predicted affinity changes among the unique and shared peptide groups for B*44:02 and B*44:05. Overall, these findings indicate that the presence of tapasin and the tapasin dependence of assembly alter HLA class I peptide-binding preferences at the peptide C terminus. The particular C-terminal amino acid preferences that are altered by tapasin are expected to be determined by the intrinsic peptide-binding specificities of HLA class I allotypes. Additionally, the findings suggest that tapasin deficiency and reduced tapasin dependence expand the permissive affinities of HLA class I-bound peptides, consistent with prior findings that HLA class I allotypes with low tapasin dependence have increased breadth of CD8+ T cell epitope presentation and are more protective in HIV infections.


Subject(s)
HIV Infections , Tryptophan , Humans , HLA-B44 Antigen/metabolism , Tryptophan/metabolism , Peptides/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Immunoglobulins/metabolism , Protein Binding , HLA-B Antigens/genetics , HLA-B Antigens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL