Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
2.
Cell ; 144(1): 27-40, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21215367

ABSTRACT

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Neoplasms/pathology , Bone Neoplasms/genetics , Cell Line, Tumor , Chromosome Painting , Female , Gene Rearrangement , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Middle Aged
3.
Am J Hum Genet ; 92(2): 301-6, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23352258

ABSTRACT

A single Mendelian trait has been mapped to the human Y chromosome: Y-linked hearing impairment. The molecular basis of this disorder is unknown. Here, we report the detailed characterization of the DFNY1 Y chromosome and its comparison with a closely related Y chromosome from an unaffected branch of the family. The DFNY1 chromosome carries a complex rearrangement, including duplication of several noncontiguous segments of the Y chromosome and insertion of ∼160 kb of DNA from chromosome 1, in the pericentric region of Yp. This segment of chromosome 1 is derived entirely from within a known hearing impairment locus, DFNA49. We suggest that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.


Subject(s)
Chromosomes, Human, Y/genetics , Genes, Y-Linked/genetics , Hearing Loss/genetics , Female , Gene Rearrangement/genetics , Humans , Male , Pedigree
4.
Lancet ; 385(9975): 1305-14, 2015 Apr 04.
Article in English | MEDLINE | ID: mdl-25529582

ABSTRACT

BACKGROUND: Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. METHODS: The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. FINDINGS: Around 80,000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. INTERPRETATION: Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene-phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. FUNDING: Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health.


Subject(s)
Developmental Disabilities/diagnosis , Genome, Human/genetics , Adolescent , Child , Child, Preschool , Developmental Disabilities/genetics , Female , Genetic Variation/genetics , Genome-Wide Association Study/methods , Heterozygote , Humans , Incidental Findings , Infant , Infant, Newborn , Information Dissemination , Male , Phenotype , Specimen Handling
5.
Nature ; 464(7289): 704-12, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19812545

ABSTRACT

Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Mutagenesis/genetics , Gene Duplication , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Reproducibility of Results
6.
Nat Genet ; 39(7 Suppl): S16-21, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17597776

ABSTRACT

The association of DNA copy-number variation (CNV) with specific gene function and human disease has been long known, but the wide scope and prevalence of this form of variation has only recently been fully appreciated. The latest studies using microarray technology have demonstrated that as much as 12% of the human genome and thousands of genes are variable in copy number, and this diversity is likely to be responsible for a significant proportion of normal phenotypic variation. Current challenges involve developing methods not only for detecting and cataloging CNVs in human populations at increasingly higher resolution but also for determining the association of CNVs with biological function, recent human evolution, and common and complex human disease.


Subject(s)
Gene Dosage , Genetic Variation , Oligonucleotide Array Sequence Analysis/methods , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human, Pair 18/genetics , Cloning, Molecular , DNA, Complementary/genetics , Genome, Human , Genotype , Humans , Nucleic Acid Hybridization , Phenotype , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
7.
Nat Genet ; 39(7 Suppl): S7-15, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17597783

ABSTRACT

There has been an explosion of data describing newly recognized structural variants in the human genome. In the flurry of reporting, there has been no standard approach to collecting the data, assessing its quality or describing identified features. This risks becoming a rampant problem, in particular with respect to surveys of copy number variation and their application to disease studies. Here, we consider the challenges in characterizing and documenting genomic structural variants. From this, we derive recommendations for standards to be adopted, with the aim of ensuring the accurate presentation of this form of genetic variation to facilitate ongoing research.


Subject(s)
Genetic Variation , Genome, Human , Databases, Genetic/standards , Gene Dosage , Genomics/standards , Genomics/trends , Humans , Quality Control , Terminology as Topic
9.
Nat Genet ; 38(1): 75-81, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16327808

ABSTRACT

Recent work has shown that copy number polymorphism is an important class of genetic variation in human genomes. Here we report a new method that uses SNP genotype data from parent-offspring trios to identify polymorphic deletions. We applied this method to data from the International HapMap Project to produce the first high-resolution population surveys of deletion polymorphism. Approximately 100 of these deletions have been experimentally validated using comparative genome hybridization on tiling-resolution oligonucleotide microarrays. Our analysis identifies a total of 586 distinct regions that harbor deletion polymorphisms in one or more of the families. Notably, we estimate that typical individuals are hemizygous for roughly 30-50 deletions larger than 5 kb, totaling around 550-750 kb of euchromatic sequence across their genomes. The detected deletions span a total of 267 known and predicted genes. Overall, however, the deleted regions are relatively gene-poor, consistent with the action of purifying selection against deletions. Deletion polymorphisms may well have an important role in the genetics of complex traits; however, they are not directly observed in most current gene mapping studies. Our new method will permit the identification of deletion polymorphisms in high-density SNP surveys of trio or other family data.


Subject(s)
Genome, Human , Polymorphism, Genetic , Sequence Deletion , Databases, Genetic , Humans , In Situ Hybridization/methods , International Cooperation , Microarray Analysis/methods , Models, Genetic , Polymorphism, Single Nucleotide , Reproducibility of Results
10.
Nat Genet ; 38(9): 1032-7, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16906163

ABSTRACT

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 17 , Developmental Disabilities/genetics , Learning Disabilities/genetics , tau Proteins/genetics , Adolescent , Adult , Child, Preschool , Chromosome Inversion , Female , Genetic Markers , Haplotypes , Heterozygote , Humans , In Situ Hybridization, Fluorescence , Male , Nucleic Acid Hybridization , Physical Chromosome Mapping , Polymorphism, Single Nucleotide , Repetitive Sequences, Nucleic Acid
11.
Hum Mol Genet ; 21(R1): R37-44, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22962312

ABSTRACT

Patients with developmental disorders often harbour sub-microscopic deletions or duplications that lead to a disruption of normal gene expression or perturbation in the copy number of dosage-sensitive genes. Clinical interpretation for such patients in isolation is hindered by the rarity and novelty of such disorders. The DECIPHER project (https://decipher.sanger.ac.uk) was established in 2004 as an accessible online repository of genomic and associated phenotypic data with the primary goal of aiding the clinical interpretation of rare copy-number variants (CNVs). DECIPHER integrates information from a variety of bioinformatics resources and uses visualization tools to identify potential disease genes within a CNV. A two-tier access system permits clinicians and clinical scientists to maintain confidential linked anonymous records of phenotypes and CNVs for their patients that, with informed consent, can subsequently be shared with the wider clinical genetics and research communities. Advances in next-generation sequencing technologies are making it practical and affordable to sequence the whole exome/genome of patients who display features suggestive of a genetic disorder. This approach enables the identification of smaller intragenic mutations including single-nucleotide variants that are not accessible even with high-resolution genomic array analysis. This article briefly summarizes the current status and achievements of the DECIPHER project and looks ahead to the opportunities and challenges of jointly analysing structural and sequence variation in the human genome.


Subject(s)
DNA Copy Number Variations , Databases, Nucleic Acid , Developmental Disabilities/genetics , Genetic Diseases, Inborn/genetics , Internet , Computational Biology , Genetic Predisposition to Disease , Genetic Variation , Genome, Human , Humans , Information Dissemination , Mutation , Phenotype , Polymorphism, Single Nucleotide
12.
Hum Mol Genet ; 20(10): 1925-36, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21349920

ABSTRACT

The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.


Subject(s)
Chromosomes, Human, X/genetics , DNA Replication/genetics , Isochromosomes/genetics , Base Sequence , Chromosome Breakage , Comparative Genomic Hybridization , Humans , Models, Genetic , Molecular Sequence Data , Nucleic Acid Conformation , Polymorphism, Genetic , Recombination, Genetic , Sequence Alignment , Tandem Repeat Sequences/genetics
13.
Am J Hum Genet ; 87(2): 189-98, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20673863

ABSTRACT

By using a combination of array comparative genomic hybridization and a candidate gene approach, we identified nuclear factor I/X (NFIX) deletions or nonsense mutation in three sporadic cases of a Sotos-like overgrowth syndrome with advanced bone age, macrocephaly, developmental delay, scoliosis, and unusual facies. Unlike the aforementioned human syndrome, Nfix-deficient mice are unable to gain weight and die in the first 3 postnatal weeks, while they also present with a spinal deformation and decreased bone mineralization. These features prompted us to consider NFIX as a candidate gene for Marshall-Smith syndrome (MSS), a severe malformation syndrome characterized by failure to thrive, respiratory insufficiency, accelerated osseous maturation, kyphoscoliosis, osteopenia, and unusual facies. Distinct frameshift and splice NFIX mutations that escaped nonsense-mediated mRNA decay (NMD) were identified in nine MSS subjects. NFIX belongs to the Nuclear factor one (NFI) family of transcription factors, but its specific function is presently unknown. We demonstrate that NFIX is normally expressed prenatally during human brain development and skeletogenesis. These findings demonstrate that allelic NFIX mutations trigger distinct phenotypes, depending specifically on their impact on NMD.


Subject(s)
Abnormalities, Multiple/genetics , Alleles , Codon, Nonsense/genetics , Mutation/genetics , NFI Transcription Factors/genetics , RNA Stability/genetics , Adolescent , Adult , Base Sequence , Child , Chromosomes, Human, Pair 19/genetics , Comparative Genomic Hybridization , DNA Mutational Analysis , Female , Gene Expression Regulation , Genetic Testing , Humans , In Situ Hybridization , Male , Molecular Sequence Data , NFI Transcription Factors/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Syndrome
14.
Am J Hum Genet ; 86(5): 749-64, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20466091

ABSTRACT

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


Subject(s)
Chromosome Disorders/genetics , Congenital Abnormalities/genetics , Developmental Disabilities/genetics , Child , Chromosome Banding , Humans , Karyotyping
15.
Nature ; 447(7146): 799-816, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17571346

ABSTRACT

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.


Subject(s)
Genome, Human/genetics , Genomics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Conserved Sequence/genetics , DNA Replication , Evolution, Molecular , Exons/genetics , Genetic Variation/genetics , Heterozygote , Histones/metabolism , Humans , Pilot Projects , Protein Binding , RNA, Messenger/genetics , RNA, Untranslated/genetics , Transcription Factors/metabolism , Transcription Initiation Site
16.
Nat Genet ; 36(9): 931-2, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15340426

ABSTRACT

Two papers report that large-scale copy-number variations, ranging in size from 100 kb to 2 Mb, are distributed widely throughout the human genome, and that a high proportion of them encompass known genes. This unexpected level of genome variation has implications for our view of human genetic diversity and phenotypic variation.


Subject(s)
Gene Dosage , Genetic Variation , Genome, Human , Humans , Phenotype
17.
Hum Mutat ; 33(6): 930-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-26285306

ABSTRACT

The range of commercially available array platforms and analysis software packages is expanding and their utility is improving, making reliable detection of copy-number variants (CNVs) relatively straightforward. Reliable interpretation of CNV data, however, is often difficult and requires expertise. With our knowledge of the human genome growing rapidly, applications for array testing continuously broadening, and the resolution of CNV detection increasing, this leads to great complexity in interpreting what can be daunting data. Correct CNV interpretation and optimal use of the genotype information provided by single-nucleotide polymorphism probes on an array depends largely on knowledge present in various resources. In addition to the availability of host laboratories' own datasets and national registries, there are several public databases and Internet resources with genotype and phenotype information that can be used for array data interpretation. With so many resources now available, it is important to know which are fit-for-purpose in a diagnostic setting. We summarize the characteristics of the most commonly used Internet databases and resources, and propose a general data interpretation strategy that can be used for comparative hybridization, comparative intensity, and genotype-based array data.


Subject(s)
DNA Copy Number Variations , Databases, Genetic , Diagnostic Tests, Routine , Internet , Software , Genetic Variation , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Search Engine
18.
Am J Hum Genet ; 84(4): 524-33, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19344873

ABSTRACT

Many patients suffering from developmental disorders harbor submicroscopic deletions or duplications that, by affecting the copy number of dosage-sensitive genes or disrupting normal gene expression, lead to disease. However, many aberrations are novel or extremely rare, making clinical interpretation problematic and genotype-phenotype correlations uncertain. Identification of patients sharing a genomic rearrangement and having phenotypic features in common leads to greater certainty in the pathogenic nature of the rearrangement and enables new syndromes to be defined. To facilitate the analysis of these rare events, we have developed an interactive web-based database called DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources) which incorporates a suite of tools designed to aid the interpretation of submicroscopic chromosomal imbalance, inversions, and translocations. DECIPHER catalogs common copy-number changes in normal populations and thus, by exclusion, enables changes that are novel and potentially pathogenic to be identified. DECIPHER enhances genetic counseling by retrieving relevant information from a variety of bioinformatics resources. Known and predicted genes within an aberration are listed in the DECIPHER patient report, and genes of recognized clinical importance are highlighted and prioritized. DECIPHER enables clinical scientists worldwide to maintain records of phenotype and chromosome rearrangement for their patients and, with informed consent, share this information with the wider clinical research community through display in the genome browser Ensembl. By sharing cases worldwide, clusters of rare cases having phenotype and structural rearrangement in common can be identified, leading to the delineation of new syndromes and furthering understanding of gene function.


Subject(s)
Chromosome Aberrations , Databases, Genetic , Adult , Child , Child, Preschool , Comparative Genomic Hybridization , Computational Biology , Female , Gene Dosage , Genes, Dominant , Genome, Human , Humans , Internet , Male , Phenotype , Syndrome
19.
Am J Hum Genet ; 84(6): 780-91, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19500772

ABSTRACT

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.


Subject(s)
Bronchopulmonary Dysplasia/genetics , Chromosomes, Human, Pair 16/genetics , Forkhead Transcription Factors/genetics , Gene Deletion , Gene Silencing , Mutation/genetics , Pulmonary Alveoli/pathology , Abnormalities, Multiple/genetics , Capillaries/abnormalities , Child, Preschool , Chromosome Mapping , Doxorubicin/analogs & derivatives , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Male , Pulmonary Alveoli/blood supply , Pulmonary Veins/abnormalities
20.
Bioinformatics ; 27(9): 1195-200, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21357574

ABSTRACT

MOTIVATION: The careful normalization of array-based comparative genomic hybridization (aCGH) data is of critical importance for the accurate detection of copy number changes. The difference in labelling affinity between the two fluorophores used in aCGH-usually Cy5 and Cy3-can be observed as a bias within the intensity distributions. If left unchecked, this bias is likely to skew data interpretation during downstream analysis and lead to an increased number of false discoveries. RESULTS: In this study, we have developed aCGH.Spline, a natural cubic spline interpolation method followed by linear interpolation of outlier values, which is able to remove a large portion of the dye bias from large aCGH datasets in a quick and efficient manner. CONCLUSIONS: We have shown that removing this bias and reducing the experimental noise has a strong positive impact on the ability to detect accurately both copy number variation (CNV) and copy number alterations (CNA).


Subject(s)
Comparative Genomic Hybridization/methods , Fluorescent Dyes/chemistry , Software , Carbocyanines/chemistry , DNA Copy Number Variations
SELECTION OF CITATIONS
SEARCH DETAIL