Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Eur Biophys J ; 46(8): 813-820, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28866771

ABSTRACT

Extracellular vesicles (EVs) are small vesicles ensuring transport of molecules between cells and throughout the body. EVs contain cell type-specific signatures and have been proposed as biomarkers in a variety of diseases. Their small size (<1 µm) and biological and physical functions make them obvious candidates for therapeutic agents in immune therapy, vaccination, regenerative medicine and drug delivery. However, due to the complexity and heterogeneity of their origin and composition, the actual mechanism through which these vesicles exert their functions is still unknown and represents a great biomedical challenge. Moreover, because of their small dimensions, the quantification, size distribution and biophysical characterization of these particles are challenging and still subject to controversy. Here, we address the advantage of atomic force microscopy (AFM), for the characterization of isolated EVs. We review AFM imaging of EVs immobilized on different substrates (mica, glass) to identify the influence of isolation and deposition methods on the size distribution, morphology and mechanical properties of EVs.


Subject(s)
Extracellular Vesicles/metabolism , Microscopy, Atomic Force , Biomechanical Phenomena
2.
Langmuir ; 28(40): 14291-300, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22970746

ABSTRACT

Upon adsorption on the (111) facet of Ag, 4-[trans-2-(pyrid-4-yl-vinyl)] benzoic acid (PVBA) self-assembles into a highly ordered, chiral twin chain structure at submonolayer coverages with domains that can extend for micrometers in one dimension. Using polarization-dependent measurements of C and N K-shell excitations in near-edge X-ray absorption fine structure (NEXAFS) spectra, we determine the binding geometry of single PVBA molecules within this unique ensemble for both low and high coverage regimes. At submonolayer coverage, the molecule is twisted to facilitate the formation of hydrogen bonds. The gas-phase planarity is gradually recovered as the coverage is increased, with complete planarity coinciding with loss of order in the overlayer. Thermal treatment of the PVBA film results in deprotonation of the carboxyl tail of the molecule, but despite the suppression of the stabilizing hydrogen-bonds, the overlayer remains ordered.

3.
Biophys Chem ; 255: 106272, 2019 12.
Article in English | MEDLINE | ID: mdl-31698188

ABSTRACT

Alpha-Synuclein (AS) is the protein playing the major role in Parkinson's disease (PD), a neurological disorder characterized by the degeneration of dopaminergic neurons and the accumulation of AS into amyloid plaques. The aggregation of AS into intermediate aggregates, called oligomers, and their pathological relation with biological membranes are considered key steps in the development and progression of the disease. Here we propose a multi-technique approach to study the effects of AS in its monomeric and oligomeric forms on artificial lipid membranes containing GM1 ganglioside. GM1 is a component of functional membrane micro-domains, called lipid rafts, and has been demonstrated to bind AS in neurons. With the aim to understand the relation between gangliosides and AS, here we exploit the complementarity of microscopy (Atomic Force Microscopy) and neutron scattering (Small Angle Neutron Scattering and Neutron Reflectometry) techniques to analyze the structural changes of two different membranes (Phosphatidylcholine and Phosphatidylcholine/GM1) upon binding with AS. We observe the monomer- and oligomer-interactions are both limited to the external membrane leaflet and that the presence of ganglioside leads to a stronger interaction of the membranes and AS in its monomeric and oligomeric forms with a stronger aggressiveness in the latter. These results support the hypothesis of the critical role of lipid rafts not only in the biofunctioning of the protein, but even in the development and the progression of the Parkinson's disease.


Subject(s)
G(M1) Ganglioside/chemistry , Lipid Bilayers/chemistry , alpha-Synuclein/chemistry , Dimyristoylphosphatidylcholine/chemistry , G(M1) Ganglioside/metabolism , Humans , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Neutron Diffraction , Phosphatidylcholines/chemistry , Protein Aggregates/physiology , Protein Binding , Scattering, Small Angle , alpha-Synuclein/metabolism
5.
Phys Rev B Condens Matter ; 51(3): 1954-1956, 1995 Jan 15.
Article in English | MEDLINE | ID: mdl-9978925
7.
Science ; 321(5891): 943-6, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18703737

ABSTRACT

The structure of self-assembled monolayers (SAMs) of long-chain alkyl sulfides on gold(111) has been resolved by density functional theory-based molecular dynamics simulations and grazing incidence x-ray diffraction for hexanethiol and methylthiol. The analysis of molecular dynamics trajectories and the relative energies of possible SAM structures suggest a competition between SAM ordering, driven by the lateral van der Waals interaction between alkyl chains, and disordering of interfacial Au atoms, driven by the sulfur-gold interaction. We found that the sulfur atoms of the molecules bind at two distinct surface sites, and that the first gold surface layer contains gold atom vacancies (which are partially redistributed over different sites) as well as gold adatoms that are laterally bound to two sulfur atoms.

8.
Phys Rev Lett ; 98(1): 016102, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17358489

ABSTRACT

We have investigated the controversy surrounding the (sqrt[3] x sqrt[3]) R30 degrees structure of self-assembled monolayers of methylthiolate on Au(111) by first principles molecular dynamics simulations, energy and angle resolved photoelectron diffraction, and grazing incidence x-ray diffraction. Our simulations find a dynamic equilibrium between bridge site adsorption and a novel structure where 2 CH3S radicals are bound to an Au adatom that has been lifted from the gold substrate. As a result, the interface is characterized by a large atomic roughness with both adatoms and vacancies. This result is confirmed by extensive photoelectron and grazing incidence x-ray diffraction measurements.

9.
Phys Rev Lett ; 90(20): 206101, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12785907

ABSTRACT

We use a seeded supersonic molecular beam to control the kinetic energy of pentacene (C22H14) during deposition and growth on Ag(111). Highly ordered thin films are grown at low substrate temperatures (approximately 200 K) at kinetic energies of a few electron volts, as shown by low energy He diffraction and x-ray reflectivity spectra. In contrast, deposition of thermal molecules yields only amorphous films. Growth at room or higher temperature substrates yields films of poorer quality irrespective of the depositing beam energy. We find that after the first wetting layer is completed, a new ordered phase is formed, whose in-plane lattice spacings match one of the bulk crystal planes. The high quality of the films can be interpreted as the result of local annealing induced by the impact of the impinging high-energy molecules.

SELECTION OF CITATIONS
SEARCH DETAIL