Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
FASEB J ; 33(8): 8865-8877, 2019 08.
Article in English | MEDLINE | ID: mdl-31034780

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1ß gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1ß transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1ß secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ubiquitination , Viral Structural Proteins/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Inflammasomes/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , TNF Receptor-Associated Factor 3/metabolism , Vero Cells
2.
PLoS Pathog ; 11(10): e1005215, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26513244

ABSTRACT

A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred BALB C , Severe acute respiratory syndrome-related coronavirus/growth & development , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Virulence
3.
J Virol ; 89(7): 3870-87, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609816

ABSTRACT

UNLABELLED: Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo. To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4(+) and CD8(+) T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE: Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses. Previously, we demonstrated that a SARS-CoV lacking the E protein was attenuated in vivo. Here, we show that small deletions and modifications within the E protein led to virus attenuation, manifested by minimal lung injury, limited neutrophil influx to the lungs, reduced expression of proinflammatory cytokines, increased anti-inflammatory cytokine levels, and enhanced CD4(+) and CD8(+) T cell counts in vivo, suggesting that these phenomena contribute to virus attenuation. The attenuated mutants fully protected mice from challenge with virulent virus. These studies show that mutations in the E protein are not well tolerated and indicate that this protein is an excellent target for vaccine development.


Subject(s)
Severe Acute Respiratory Syndrome/prevention & control , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/metabolism , Viral Vaccines/immunology , Virulence Factors/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/biosynthesis , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Lung/immunology , Lung/pathology , Mice, Inbred BALB C , Point Mutation , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Sequence Deletion , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/pathology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/genetics , Viroporin Proteins , Virulence Factors/genetics
4.
PLoS Pathog ; 10(8): e1004320, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25122212

ABSTRACT

A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation.


Subject(s)
Host-Parasite Interactions/physiology , PDZ Domains/physiology , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Viral Envelope Proteins/metabolism , Animals , Blotting, Western , Chlorocebus aethiops , Disease Models, Animal , Female , Immunoprecipitation , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Severe Acute Respiratory Syndrome/metabolism , Signal Transduction/physiology , Syntenins/metabolism , Two-Hybrid System Techniques , Vero Cells , Viroporin Proteins , Virulence , p38 Mitogen-Activated Protein Kinases/metabolism
5.
PLoS Pathog ; 10(5): e1004077, 2014 May.
Article in English | MEDLINE | ID: mdl-24788150

ABSTRACT

Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1ß were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1ß was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence.


Subject(s)
Ion Channels/physiology , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/growth & development , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Viral Envelope Proteins/physiology , Amino Acid Sequence , Animals , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Female , Host-Pathogen Interactions/genetics , Ion Channels/chemistry , Ion Channels/genetics , Mice , Mice, Inbred BALB C , Models, Molecular , Organisms, Genetically Modified , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus/genetics , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
6.
J Virol ; 88(2): 913-24, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24198408

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of a respiratory disease that has a 10% mortality rate. We previously showed that SARS-CoV lacking the E gene (SARS-CoV-ΔE) is attenuated in several animal model systems. Here, we show that absence of the E protein resulted in reduced expression of proinflammatory cytokines, decreased numbers of neutrophils in lung infiltrates, diminished lung pathology, and increased mouse survival, suggesting that lung inflammation contributed to SARS-CoV virulence. Further, infection with SARS-CoV-ΔE resulted in decreased activation of NF-κB compared to levels for the wild-type virus. Most important, treatment with drugs that inhibited NF-κB activation led to a reduction in inflammation and lung pathology in both SARS-CoV-infected cultured cells and mice and significantly increased mouse survival after SARS-CoV infection. These data indicated that activation of the NF-κB signaling pathway represents a major contribution to the inflammation induced after SARS-CoV infection and that NF-κB inhibitors are promising antivirals in infections caused by SARS-CoV and potentially other pathogenic human coronaviruses.


Subject(s)
Down-Regulation , NF-kappa B/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/mortality , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , Cytokines/genetics , Cytokines/immunology , Female , Humans , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viroporin Proteins
7.
mBio ; 14(1): e0313622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36625656

ABSTRACT

Coronaviruses (CoVs) of genera α, ß, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Humans , SARS-CoV-2/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Lung/metabolism , RNA, Messenger
8.
Methods Mol Biol ; 2256: 217-236, 2021.
Article in English | MEDLINE | ID: mdl-34014525

ABSTRACT

Viruses have evolved to interact with their hosts. Some viruses such as human papilloma virus, dengue virus, SARS-CoV, or influenza virus encode proteins including a PBM that interact with cellular proteins containing PDZ domains. There are more than 400 cellular protein isoforms with these domains in the human genome, indicating that viral PBMs have a high potential to influence the behavior of the cell. In this review we analyze the most relevant cellular processes known to be affected by viral PBM-cellular PDZ interactions including the establishment of cell-cell interactions and cell polarity, the regulation of cell survival and apoptosis and the activation of the immune system. Special attention has been provided to coronavirus PBM conservation throughout evolution and to the role of the PBMs of human coronaviruses SARS-CoV and MERS-CoV in pathogenesis.


Subject(s)
Cell Adhesion Molecules/metabolism , Host-Pathogen Interactions , Viral Proteins/metabolism , Virus Diseases/metabolism , Viruses/metabolism , Apoptosis/physiology , Cell Proliferation/physiology , Humans , PDZ Domains , Protein Binding , Protein Structure, Secondary , Virus Diseases/virology , Viruses/isolation & purification
9.
mBio ; 12(2)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653888

ABSTRACT

There are no approved vaccines against the life-threatening Middle East respiratory syndrome coronavirus (MERS-CoV). Attenuated vaccines have proven their potential to induce strong and long-lasting immune responses. We have previously described that severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a virulence factor. Based on this knowledge, a collection of mutants carrying partial deletions spanning the C-terminal domain of the E protein (rMERS-CoV-E*) has been generated using a reverse genetics system. One of these mutants, MERS-CoV-E*Δ2in, was attenuated and provided full protection in a challenge with virulent MERS-CoV after a single immunization dose. The MERS-CoV-E*Δ2in mutant was stable as it maintained its attenuation after 16 passages in cell cultures and has been selected as a promising vaccine candidate.IMPORTANCE The emergence of the new highly pathogenic human coronavirus SARS-CoV-2 that has already infected more than 80 million persons, killing nearly two million of them, clearly indicates the need to design efficient and safe vaccines protecting from these coronaviruses. Modern vaccines can be derived from virus-host interaction research directed to the identification of signaling pathways essential for virus replication and for virus-induced pathogenesis, in order to learn how to attenuate these viruses and design vaccines. Using a reverse genetics system developed in our laboratory, an infectious cDNA clone of MERS-CoV was engineered. Using this cDNA, we sequentially deleted several predicted and conserved motifs within the envelope (E) protein of MERS-CoV, previously associated with the presence of virulence factors. The in vitro and in vivo evaluation of these deletion mutants highlighted the relevance of predicted linear motifs in viral pathogenesis. Two of them, an Atg8 protein binding motif (Atg8-BM), and a forkhead-associated binding motif (FHA-BM), when deleted, rendered an attenuated virus that was evaluated as a vaccine candidate, leading to full protection against challenge with a lethal dose of MERS-CoV. This approach can be extended to the engineering of vaccines protecting against the new pandemic SARS-CoV-2.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/pathogenicity , COVID-19/immunology , COVID-19/prevention & control , Genetic Engineering/methods , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines, Attenuated/therapeutic use , Viral Vaccines/therapeutic use
10.
mBio ; 9(3)2018 05 22.
Article in English | MEDLINE | ID: mdl-29789363

ABSTRACT

Viroporins are viral proteins with ion channel (IC) activity that play an important role in several processes, including virus replication and pathogenesis. While many coronaviruses (CoVs) encode two viroporins, severe acute respiratory syndrome CoV (SARS-CoV) encodes three: proteins 3a, E, and 8a. Additionally, proteins 3a and E have a PDZ-binding motif (PBM), which can potentially bind over 400 cellular proteins which contain a PDZ domain, making them potentially important for the control of cell function. In the present work, a comparative study of the functional motifs included within the SARS-CoV viroporins was performed, mostly focusing on the roles of the IC and PBM of E and 3a proteins. Our results showed that the full-length E and 3a proteins were required for maximal SARS-CoV replication and virulence, whereas viroporin 8a had only a minor impact on these activities. A virus missing both the E and 3a proteins was not viable, whereas the presence of either protein with a functional PBM restored virus viability. E protein IC activity and the presence of its PBM were necessary for virulence in mice. In contrast, the presence or absence of the homologous motifs in protein 3a did not influence virus pathogenicity. Therefore, dominance of the IC and PBM of protein E over those of protein 3a was demonstrated in the induction of pathogenesis in mice.IMPORTANCE Collectively, these results demonstrate key roles for the ion channel and PBM domains in optimal virus replication and pathogenesis and suggest that the viral viroporins and PBMs are suitable targets for antiviral therapy and for mutation in attenuated SARS-CoV vaccines.


Subject(s)
Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Viral Envelope Proteins/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Chlorocebus aethiops , Female , Humans , Mice , Mice, Inbred BALB C , Severe acute respiratory syndrome-related coronavirus/genetics , Vero Cells , Viral Envelope Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins , Virulence
12.
Viruses ; 7(7): 3552-73, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26151305

ABSTRACT

Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.


Subject(s)
Ion Channels/metabolism , Viral Proteins/metabolism , Virus Diseases/virology , Virus Replication , Viruses/metabolism , Viruses/pathogenicity , Animals , Humans , Ion Channels/chemistry , Ion Channels/genetics , Ions/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viruses/chemistry , Viruses/genetics
13.
Toxicon ; 96: 1-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25598497

ABSTRACT

Ribotoxins are a family of fungal ribosome-inactivating proteins displaying highly specific ribonucleolytic activity against the sarcin/ricin loop (SRL) of the larger rRNA, with α-sarcin as its best-characterized member. Their toxicity arises from the combination of this activity with their ability to cross cell membranes. The involvement of α-sarcin's loops 2 and 3 in SRL and ribosomal proteins recognition, as well as in the ribotoxin-lipid interactions involving cell penetration, has been suggested some time ago. In the work presented now different mutants have been prepared in order to study the role of these loops in their ribonucleolytic and lipid-interacting properties. The results obtained confirm that loop 3 residues Lys 111, 112, and 114 are key actors of the specific recognition of the SRL. In addition, it is also shown that Lys 114 and Tyr 48 conform a network of interactions which is essential for the catalysis. Lipid-interaction studies show that this Lys-rich region is indeed involved in the phospholipids recognition needed to cross cell membranes. Loop 2 is shown to be responsible for the conformational change which exposes the region establishing hydrophobic interactions with the membrane inner leaflets and eases penetration of ribotoxins target cells.


Subject(s)
Endoribonucleases/chemistry , Endoribonucleases/toxicity , Fungal Proteins/chemistry , Fungal Proteins/toxicity , Models, Molecular , Protein Synthesis Inhibitors/toxicity , Ribosomes/drug effects , Absorption, Physicochemical , Amino Acid Sequence , Animals , Catalysis , Cell Line , Circular Dichroism , Cloning, Molecular , DNA, Complementary/genetics , Endoribonucleases/genetics , Escherichia coli , Fungal Proteins/genetics , Molecular Sequence Data , Mutagenesis , Oligonucleotides/genetics , Phospholipids/metabolism , Protein Binding , Protein Conformation , Sequence Alignment , Spectrophotometry , Spodoptera
14.
Virology ; 485: 330-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26331680

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1ß driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein-lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1ß overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Inflammasomes/metabolism , Ions/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Envelope Proteins/metabolism , Animals , Biological Transport , Calcium Channels/metabolism , Chlorocebus aethiops , Mutation , NLR Family, Pyrin Domain-Containing 3 Protein , Severe acute respiratory syndrome-related coronavirus/genetics , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Vero Cells , Viral Envelope Proteins/genetics , Viroporin Proteins
15.
Virus Res ; 194: 124-37, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25093995

ABSTRACT

Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus ß CoVs such as MERS-CoV), but not in others (genus ß CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Envelope Proteins/metabolism , Virulence Factors/metabolism , Animals , Genes, Viral , Humans , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/growth & development , Viral Envelope Proteins/genetics , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL