Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Crit Care ; 27(1): 398, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853480

ABSTRACT

BACKGROUND: Although patients with interstitial pneumonia pattern (ILD-UIP) and acute exacerbation (AE) leading to severe acute respiratory failure may require invasive mechanical ventilation (MV), physiological data on lung mechanics during MV are lacking. We aimed at describing the physiological effect of lung-protective ventilation in patients with AE-ILD-UIP compared with primary ARDS. METHODS: Partitioned lung and chest wall mechanics were assessed in a series of AE-ILD-UIP patients matched 1:1 with primary ARDS as controls (based on BMI and PaO2/FiO2 ratio). Three PEEP levels (zero = ZEEP, 4-8 cmH2O = PEEPLOW, and titrated to achieve positive end-expiratory transpulmonary pressure PL,EE = PEEPTITRATED) were used for measurements. RESULTS: Ten AE-ILD-UIP patients and 10 matched ARDS were included. In AE-ILD-UIP median PL,EE at ZEEP was - 4.3 [- 7.6- - 2.3] cmH2O and lung elastance (EL) 44 [40-51] cmH2O/L. At PEEPLOW, PL,EE remained negative and EL did not change (p = 0.995) versus ZEEP. At PEEPTITRATED, PL,EE increased to 0.8 [0.3-1.5] cmH2O and EL to 49 [43-59] (p = 0.004 and p < 0.001 compared to ZEEP and PEEPLOW, respectively). ΔPL decreased at PEEPLOW (p = 0.018) and increased at PEEPTITRATED (p = 0.003). In matched ARDS control PEEP titration to obtain a positive PL,EE did not result in significant changes in EL and ΔPL. CONCLUSIONS: In mechanically ventilated AE-ILD-UIP patients, differently than in patients with primary ARDS, PEEP titrated to obtain a positive PL,EE significantly worsened lung mechanics.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Mechanics/physiology , Lung , Respiratory Distress Syndrome/therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/therapy
2.
Crit Care ; 26(1): 70, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331323

ABSTRACT

BACKGROUND: Excessive inspiratory effort could translate into self-inflicted lung injury, thus worsening clinical outcomes of spontaneously breathing patients with acute respiratory failure (ARF). Although esophageal manometry is a reliable method to estimate the magnitude of inspiratory effort, procedural issues significantly limit its use in daily clinical practice. The aim of this study is to describe the correlation between esophageal pressure swings (ΔPes) and nasal (ΔPnos) as a potential measure of inspiratory effort in spontaneously breathing patients with de novo ARF. METHODS: From January 1, 2021, to September 1, 2021, 61 consecutive patients with ARF (83.6% related to COVID-19) admitted to the Respiratory Intensive Care Unit (RICU) of the University Hospital of Modena (Italy) and candidate to escalation of non-invasive respiratory support (NRS) were enrolled. Clinical features and tidal changes in esophageal and nasal pressure were recorded on admission and 24 h after starting NRS. Correlation between ΔPes and ΔPnos served as primary outcome. The effect of ΔPnos measurements on respiratory rate and ΔPes was also assessed. RESULTS: ΔPes and ΔPnos were strongly correlated at admission (R2 = 0.88, p < 0.001) and 24 h apart (R2 = 0.94, p < 0.001). The nasal plug insertion and the mouth closure required for ΔPnos measurement did not result in significant change of respiratory rate and ΔPes. The correlation between measures at 24 h remained significant even after splitting the study population according to the type of NRS (high-flow nasal cannulas [R2 = 0.79, p < 0.001] or non-invasive ventilation [R2 = 0.95, p < 0.001]). CONCLUSIONS: In a cohort of patients with ARF, nasal pressure swings did not alter respiratory mechanics in the short term and were highly correlated with esophageal pressure swings during spontaneous tidal breathing. ΔPnos might warrant further investigation as a measure of inspiratory effort in patients with ARF. TRIAL REGISTRATION: NCT03826797 . Registered October 2016.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Respiration, Artificial/methods , Respiratory Insufficiency/therapy
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269565

ABSTRACT

Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.


Subject(s)
Biomarkers/metabolism , Laryngostenosis/pathology , Tracheal Stenosis/pathology , Biomechanical Phenomena , Cytokines/metabolism , Genetic Predisposition to Disease , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Laryngostenosis/genetics , Laryngostenosis/metabolism , Mechanotransduction, Cellular , Tracheal Stenosis/genetics , Tracheal Stenosis/metabolism
4.
Am J Respir Crit Care Med ; 202(4): 558-567, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32325004

ABSTRACT

Rationale: The role of inspiratory effort still has to be determined as a potential predictor of noninvasive mechanical ventilation (NIV) failure in acute hypoxic de novo respiratory failure.Objectives: To explore the hypothesis that inspiratory effort might be a major determinant of NIV failure in these patients.Methods: Thirty consecutive patients with acute hypoxic de novo respiratory failure admitted to a single center and candidates for a 24-hour NIV trial were enrolled. Clinical features, tidal change in esophageal pressure (ΔPes), tidal change in dynamic transpulmonary pressure (ΔPl), expiratory Vt, and respiratory rate were recorded on admission and 2-4 to 12-24 hours after NIV start and were tested for correlation with outcomes.Measurements and Main Results: ΔPes and ΔPes/ΔPl ratio were significantly lower 2 hours after NIV start in patients who successfully completed the NIV trial (n = 18) compared with those who needed endotracheal intubation (n = 12) (median [interquartile range], 11 [8-15] cm H2O vs. 31.5 [30-36] cm H2O; P < 0.0001), whereas other variables differed later. ΔPes was not related to other predictors of NIV failure at baseline. NIV-induced reduction in ΔPes of 10 cm H2O or more after 2 hours of treatment was strongly associated with avoidance of intubation and represented the most accurate predictor of treatment success (odds ratio, 15; 95% confidence interval, 2.8-110; P = 0.001 and area under the curve, 0.97; 95% confidence interval, 0.91-1; P < 0.0001).Conclusions: The magnitude of inspiratory effort relief as assessed by ΔPes variation within the first 2 hours of NIV was an early and accurate predictor of NIV outcome at 24 hours.Clinical trial registered with www.clinicaltrials.gov (NCT03826797).


Subject(s)
Esophagus/physiopathology , Inhalation , Noninvasive Ventilation , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Aged , Aged, 80 and over , Female , Humans , Male , Manometry , Middle Aged , Pilot Projects , Predictive Value of Tests , Prospective Studies , Time Factors
5.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445658

ABSTRACT

Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.


Subject(s)
Biomarkers/metabolism , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases, Interstitial/pathology , Animals , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism
6.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208586

ABSTRACT

Lung fibrosis results from the synergic interplay between regenerative deficits of the alveolar epithelium and dysregulated mechanisms of repair in response to alveolar and vascular damage, which is followed by progressive fibroblast and myofibroblast proliferation and excessive deposition of the extracellular matrix. The increased parenchymal stiffness of fibrotic lungs significantly affects respiratory mechanics, making the lung more fragile and prone to non-physiological stress during spontaneous breathing and mechanical ventilation. Given their parenchymal inhomogeneity, fibrotic lungs may display an anisotropic response to mechanical stresses with different regional deformations (micro-strain). This behavior is not described by the standard stress-strain curve but follows the mechano-elastic models of "squishy balls", where the elastic limit can be reached due to the excessive deformation of parenchymal areas with normal elasticity that are surrounded by inelastic fibrous tissue or collapsed induration areas, which tend to protrude outside the fibrous ring. Increasing evidence has shown that non-physiological mechanical forces applied to fibrotic lungs with associated abnormal mechanotransduction could favor the progression of pulmonary fibrosis. With this review, we aim to summarize the state of the art on the relation between mechanical forces acting on the lung and biological response in pulmonary fibrosis, with a focus on the progression of damage in the fibrotic lung during spontaneous breathing and assisted ventilatory support.


Subject(s)
Elasticity , Lung/metabolism , Lung/pathology , Mechanotransduction, Cellular , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Algorithms , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Disease Progression , Disease Susceptibility , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Mechanical Phenomena , Models, Biological , Pulmonary Fibrosis/etiology
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830058

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Lung Neoplasms/genetics , Animals , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/drug therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mechanotransduction, Cellular , Myofibroblasts/metabolism , Transforming Growth Factor beta1/metabolism
8.
Cytometry A ; 97(7): 668-673, 2020 07.
Article in English | MEDLINE | ID: mdl-32275124

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 heavily involves all those working in a laboratory. Samples from known infected patients or donors who are considered healthy can arrive, and a colleague might be asymptomatic but able to transmit the virus. Working in a clinical laboratory is posing several safety challenges. Few years ago, International Society for Advancement of Cytometry published guidelines to safely analyze and sort human samples that were revised in these days. We describe the procedures that we have been following since the first patient appeared in Italy, which have only slightly modified our standard one, being all human samples associated with risks. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Medical Laboratory Personnel , Occupational Health , Pneumonia, Viral/blood , Specimen Handling/methods , COVID-19 , Cytokine Release Syndrome/blood , Flow Cytometry/methods , Humans , Italy , Masks , Occupational Exposure/prevention & control , Pandemics , Protective Clothing , SARS-CoV-2
10.
BMC Pulm Med ; 19(1): 160, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455341

ABSTRACT

BACKGROUND: Diaphragmatic assessment by ultrasound (US) is a non-invasive and useful method in the clinical management of patients with Amyotrophic Lateral Sclerosis (ALS). The aim of our observational study was to evaluate the impact of serial assessment of the diaphragmatic function by US on long-term outcomes in a series of patients suffering from ALS and to correlate US indices of diaphragmatic function and respiratory function tests with these outcomes. METHODS: A cohort of 39 consecutive patients has been followed up to 24 months. Both lung volume (forced vital capacity, FVC) and diaphragmatic pressure generating capacity (by sniff inspiratory nasal pressure (SNIP) and by both US thickening fraction, ΔTdi, and the ratio of the thickening fraction between tidal volume and maximal lung capacity, ΔTmax) were recorded at baseline and every 3 months. Parameters were then correlated with outcomes (nocturnal hypoventilation, daily hypercapnia, start of ventilatory support (NIV), and death at 1 year) over time. RESULTS: The occurrence of ΔTmax > 0.75 increased the risk to start NIV (HR = 5.6, p = 0.001) and to die (HR = 3.7, p = 0.0001) compared with patients maintaining lower values. Moreover, compared with the occurrence of FVC < 50% of predicted, ΔTmax > 0.75 appeared slightly better correlated with NIV commencement within 6 months. CONCLUSIONS: Serial diaphragmatic assessment by ultrasound is a useful and accurate method to predict the initiation of NIV earlier in patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Respiratory Insufficiency/physiopathology , Ultrasonography , Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/physiopathology , Female , Humans , Kaplan-Meier Estimate , Linear Models , Male , Middle Aged , Noninvasive Ventilation , Prospective Studies , Respiratory Insufficiency/etiology , Time-to-Treatment , Vital Capacity
11.
Crit Care ; 22(1): 80, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29566734

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by progressive loss of lung function and poor prognosis. The so-called acute exacerbation of IPF (AE-IPF) may lead to severe hypoxemia requiring mechanical ventilation in the intensive care unit (ICU). AE-IPF shares several pathophysiological features with acute respiratory distress syndrome (ARDS), a very severe condition commonly treated in this setting.A review of the literature has been conducted to underline similarities and differences in the management of patients with AE-IPF and ARDS.During AE-IPF, diffuse alveolar damage and massive loss of aeration occurs, similar to what is observed in patients with ARDS. Differently from ARDS, no studies have yet concluded on the optimal ventilatory strategy and management in AE-IPF patients admitted to the ICU. Notwithstanding, a protective ventilation strategy with low tidal volume and low driving pressure could be recommended similarly to ARDS. The beneficial effect of high levels of positive end-expiratory pressure and prone positioning has still to be elucidated in AE-IPF patients, as well as the precise role of other types of respiratory assistance (e.g., extracorporeal membrane oxygenation) or innovative therapies (e.g., polymyxin-B direct hemoperfusion). The use of systemic drugs such as steroids or immunosuppressive agents in AE-IPF is controversial and potentially associated with an increased risk of serious adverse reactions.Common pathophysiological abnormalities and similar clinical needs suggest translating to AE-IPF the lessons learned from the management of ARDS patients. Studies focused on specific therapeutic strategies during AE-IPF are warranted.


Subject(s)
Idiopathic Pulmonary Fibrosis/therapy , Respiration, Artificial/methods , Humans , Lung/physiopathology , Positive-Pressure Respiration/methods , Respiration, Artificial/standards , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology
12.
Crit Care ; 22(1): 109, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29703214

ABSTRACT

BACKGROUND: Ultrasound (US) evaluation of diaphragmatic dysfunction (DD) has proved to be a reliable technique in critical care. In this single-center prospective study, we investigated the impact of US-assessed DD on noninvasive ventilation (NIV) failure in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and its correlation with the transdiaphragmatic pressure assessed using the invasive sniff maneuver (Pdi sniff). METHODS: A population of 75 consecutive patients with AECOPD with hypercapnic acidosis admitted to our respiratory intensive care unit (RICU) were enrolled. Change in diaphragm thickness (ΔTdi) < 20% during tidal volume was the predefined cutoff for identifying DD+/- status. Correlations between ΔTdi < 20% NIV failure and other clinical outcomes were investigated. Correlation between ΔTdi and Pdi sniff values was analyzed in a subset of ten patients. RESULTS: DD+ patients had a higher risk for NIV failure than DD- patients (risk ratio, 4.4; p <  0.001), and this finding was significantly associated with higher RICU, in-hospital, and 90-day mortality rates; longer mechanical ventilation duration; higher tracheostomy rate; and longer RICU stay. Huge increases in NIV failure (HR, 6.2; p < 0.0001) and 90-day mortality (HR, 4.7; p = 0.008) in DD+ patients were found by Kaplan-Meier analysis. ΔTdi highly correlated with Pdi sniff (Pearson's r = 0.81; p = 0.004). ΔTdi < 20% showed better accuracy in predicting NIV failure than baseline pH value and early change in both arterial blood pH and partial pressure of carbon dioxide following NIV start (AUCs 0.84 to DTdi < 20%, 0.51 to pH value at baseline, 0.56 to early change in arterial blood pH following NIV start, and 0.54 to early change in partical pressure of carbon dioxide following NIV start, respectively; p < 0.0001). CONCLUSIONS: Early and noninvasive US assessment of DD during severe AECOPD is reliable and accurate in identifying patients at major risk for NIV failure and worse prognosis.


Subject(s)
Diaphragm/pathology , Noninvasive Ventilation/standards , Patient Outcome Assessment , Pulmonary Disease, Chronic Obstructive/therapy , APACHE , Aged , Aged, 80 and over , Cohort Studies , Diagnosis , Diaphragm/anatomy & histology , Diaphragm/physiopathology , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Italy , Kaplan-Meier Estimate , Male , Noninvasive Ventilation/methods , Prospective Studies , Simplified Acute Physiology Score , Statistics, Nonparametric , Ultrasonography/methods
13.
Respirology ; 22(2): 338-344, 2017 02.
Article in English | MEDLINE | ID: mdl-27743430

ABSTRACT

BACKGROUND AND OBJECTIVE: The prevalence and clinical consequences of diaphragmatic dysfunction (DD) during acute exacerbations of COPD (AECOPD) remain unknown. The aim of this study was (i) to evaluate the prevalence of DD as assessed by ultrasonography (US) and (ii) to report the impact of DD on non-invasive mechanical ventilation (NIV) failure, length of hospital stay and mortality in severe AECOPD admitted to respiratory intensive care unit (RICU). METHODS: Forty-one consecutive AECOPD patients with respiratory acidosis admitted over a 12-month period to the RICU of the University Hospital of Modena were studied. Diaphragmatic ultrasound (DU) was performed on admission before starting NIV. A change in diaphragmatic thickness (ΔTdi) less than 20% during spontaneous breathing was considered to confirm the presence of dysfunction (DD+). NIV failure and other clinical outcomes (duration of mechanical ventilation MV, tracheostomy, length of hospital stay and mortality) were recorded. RESULTS: A total of 10 out of 41 patients (24.3%) presented DD+, which was significantly associated with steroid use (P = 0.002, R-squared = 0.19). DD+ correlated with NIV failure (P < 0.001, R-squared = 0.27), longer intensive care unit (ICU) stay (P = 0.02, R-squared = 0.13), prolonged MV (P = 0.023, R-squared = 0.15) and need for tracheostomy (P = 0.006, R-squared = 0.20). Moreover, the Kaplan-Meyer survival estimates showed that NIV failure (log-rank test P value = 0.001, HR = 8.09 (95% CI: 2.7-24.2)) and mortality in RICU (log-rank test P value = 0.039, HR = 4.08 (95% CI: 1.0-16.4)) were significantly associated with DD+. CONCLUSION: In hospitalized AECOPD patients submitted to NIV, severe DD was seen in almost one-quarter of patients. DD may cause NIV failure, and impacts on the use of clinical resources and on the patient's short-term mortality.


Subject(s)
Diaphragm , Pulmonary Disease, Chronic Obstructive , Respiration, Artificial , Ultrasonography/methods , Aged , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Female , Humans , Intensive Care Units/statistics & numerical data , Italy/epidemiology , Length of Stay , Male , Middle Aged , Pilot Projects , Prevalence , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Symptom Flare Up
15.
BMC Pulm Med ; 17(1): 130, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29017478

ABSTRACT

BACKGROUND: Recent evidences show that Pulmonary Rehabilitation (PR) is effective in patients with Interstitial Lung Disease (ILD). It is still unclear whether disease severity and/or etiology might impact on the reported benefits. We designed this prospective study 1) to confirm the efficacy of rehabilitation in a population of patients with ILDs and 2) to investigate whether baseline exercise capacity, disease severity or ILD etiology might affect outcomes. METHODS: Forty-one patients (IPF 63%, age 66.9 ± 11 ys) were enrolled in a standard PR course in two centers. Lung function, incremental and endurance cyclo-ergometry, Six Minutes Walking Distance (6MWD), chronic dyspnea (Medical Research Council scale-MRC) and quality of life (St. George Respiratory Questionnaire-SGRQ) were recorded before and at the end of PR to measure any pre-to-post change. Correlation coefficients between the baseline level of Diffuse Lung Capacity for Carbon monoxide (DLCO), Forced Vital Capacity (FVC), 6MWD, power developed during incremental endurance test, GAP index (in IPF patients only) and etiology (IPF or non-IPF) with the functional improvement at the 6MWDT (meters), at the incremental and endurance cyclo-ergometry (endurance time) and the HRQoL were assessed. RESULTS: Out of the 41 patients, 97% (n = 40) completed the PR course. Exercise performance (both at peak load and submaximal effort), symptoms (iso-time dyspnea and leg fatigue), SGRQ and MRC significantly improved after PR (p < .001). Patients with lower baseline 6MWD showed greater improvement in 6MWD (Spearman r score = - .359, p = .034) and symptoms relief at SGRQ (r = -.315, p = .025) regardless of underlying disease. CONCLUSION: Present study confirms that comprehensive rehabilitation is feasible and effective in patients with ILD of different severity and etiology. The baseline submaximal exercise capacity inversely correlates with both functional and symptom gains in this heterogeneous population.


Subject(s)
Exercise Tolerance , Exercise , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/rehabilitation , Aged , Dyspnea/etiology , Fatigue/etiology , Female , Humans , Male , Middle Aged , Prospective Studies , Quality of Life , Severity of Illness Index , Surveys and Questionnaires , Vital Capacity , Walk Test
19.
Intern Emerg Med ; 19(2): 333-342, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158462

ABSTRACT

High flow nasal oxygen (HFNO) is recommended as a first-line respiratory support during acute hypoxic respiratory failure (AHRF) and represents a proportionate treatment option for patients with do not intubate (DNI) orders. The aim of the study is to assess the effect of HFNO on inspiratory effort as assessed by esophageal manometry in a population of DNI patients suffering from AHRF. Patients with AHRF and DNI orders admitted to Respiratory intermediate Care Unit between January 1st, 2018 and May 31st, 2023 to receive HFNO and subjected to esophageal manometry were enrolled. Esophageal pressure swing (ΔPes), clinical variables before and after 2 h of HFNO and clinical outcome (including HFNO failure) were collected and compared as appropriate. The change in physiological and clinical parameters according to the intensity of baseline breathing effort was assessed and the correlation between baseline ΔPes values and the relative change in breathing effort and clinical variables after 2 h of HFNO was explored. Eighty-two consecutive patients were enrolled according to sample size calculation. Two hours after HFNO start, patients presented significant improvement in ΔPes (12 VS 16 cmH2O, p < 0.0001), respiratory rate (RR) (22 VS 28 bpm, p < 0.0001), PaO2/FiO2 (133 VS 126 mmHg, p < 0.0001), Heart rate, Acidosis, Consciousness, Oxygenation and respiratory rate (HACOR) score, (4 VS 6, p < 0.0001), Respiratory rate Oxygenation (ROX) index (8.5 VS 6.1, p < 0.0001) and BORG (1 VS 4, p < 000.1). Patients with baseline ΔPes below 20 cmH2O where those who improved all the explored variables, while patients with baseline ΔPes above 30 cmH2O did not report significant changes in physiological or clinical features. A significant correlation was found between baseline ΔPes values and after 2 h of HFNO (R2 = 0.9, p < 0.0001). ΔPes change 2 h after HFNO significantly correlated with change in BORG (p < 0.0001), ROX index (p < 0.0001), HACOR score (p < 0.001) and RR (p < 0.001). In DNI patients with AHRF, HFNO was effective in reducing breathing effort and improving respiratory and clinical variables only for those patients with not excessive inspiratory effort.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Oxygen , Respiratory Insufficiency/therapy , Hypoxia/therapy , Blood Gas Analysis , Manometry , Oxygen Inhalation Therapy
20.
Sci Rep ; 14(1): 13158, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849437

ABSTRACT

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Subject(s)
Lung , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Male , Female , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/physiopathology , Aged , Lung/physiopathology , Lung/pathology , Elasticity , Ventilator-Induced Lung Injury/physiopathology , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Respiratory Mechanics/physiology , Stress, Mechanical , Lung Diseases, Interstitial/physiopathology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL