Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Nanosci Nanotechnol ; 19(8): 4964-4973, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30913808

ABSTRACT

Iron oxide nanoparticles mineralized within the internal cavity of Ferritin protein cage are extremely appealing for the realization of multifunctional therapeutic and diagnostic agents for cancer treatment by drug delivery, magnetic fluid hyperthermia (MFH) and magnetic resonance imaging. Being the maximum mean size imposed by the internal diameter of the protein shell (ca. 8 nm) too small for the use of these systems in MFH, a valuable strategy for the improvement of the hyperthermic efficiency is increasing the magnetic anisotropy by doping the iron oxide with divalent Co ions. This strategy has been demonstrated to be highly efficient in the case of iron oxide nanoparticles mineralized in Human Ferritin (HFt). However, a deterioration of nanoparticles crystallinity and consequently a reduction of the hyperthermic efficiency were observed with increasing Co-doping. In this contribution, we compare two series of Co-doped iron oxide nanoparticles (Co-doping level up to 15%) mineralized into HFt and into Ferritin from the archaea Pirococcus Furiosus (PfFt), the protein structure of which differs for the nucleation sites, with the aim of increasing the crystalline quality of the inorganic cores for larger Co doping. Highly monodisperse nanoparticles of 6-7 nm were obtained in both series. The structural and magnetic characterization indicate that the PfFt series is less subjected to crystallinity deterioration with increasing Co content with respect to the HFt one. Such difference is reflected in the hyperthermic efficiency, which reaches the maximum value for different intermediate Co-doping (10% and 5% for PfFt and HFt, respectively), and goes to zero for further Co-doping increments.

2.
Int J Mol Sci ; 18(7)2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28718812

ABSTRACT

Doxorubicin is employed alone or in combination for the treatment of several hematological and solid malignancies; despite its efficacy, there are associated cardiotoxicity limits both in its application in patients with heart disease risk factors and also in its long-term use. HFt-MP-PAS40 is a genetically engineered human ferritin heavy chain (HFt)-based construct able to efficiently entrap and deliver doxorubicin to cancer cells. HF-MP-PAS contains a short motif sequence (defined as MP) responsive to proteolytic cleavage by tumor matrix metalloproteases (MMPs), located between each HFt subunit and a masking polypeptide sequence rich in proline (P), alanine (A), and serine (S) residues (PAS). This carrier displayed excellent therapeutic efficacy in a xenogenic pancreatic cancer model in vivo, leading to a significant increase in overall animal survival in treated mice. Herein, we describe the HFt-MP-PAS40-Dox efficacy against squamous cell carcinomas of the head and neck (HNSCC) with the goal of validating the application of our nano-drug for the treatment of different solid tumors. In addition, a tolerability study in healthy mice was also performed. The results indicate that HFt-MP-PAS40-Dox produced increased anti-tumor effects both in vitro and in vivo in comparison to the free drug in several HNSCC cell lines. In the acute toxicity studies, the maximum tolerated dose (MTD) of HFt-MP-PAS40-Dox was about 3.5 higher than the free drug: 25 mg/kg versus 7 mg/kg doxorubicin equivalents. Importantly, evaluation of heart tissues provided evidence that doxorubicin is less cardio-toxic when encapsulated inside the ferritin carrier. In conclusion, HFt-MP-PAS40-Dox may be administered safely at higher doses compared with the free drug, resulting in superior efficacy to control HNSCC malignancies.


Subject(s)
Apoferritins/chemistry , Carcinoma, Squamous Cell/drug therapy , Doxorubicin/therapeutic use , Head and Neck Neoplasms/drug therapy , Nanoparticles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Peptides/chemistry , Receptors, Transferrin/metabolism , Squamous Cell Carcinoma of Head and Neck , Treatment Outcome
3.
Biomacromolecules ; 17(2): 514-22, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26686226

ABSTRACT

A novel human ferritin-based nanocarrier, composed of 24 modified monomers able to auto-assemble into a modified protein cage, was produced and used as selective carrier of anti-tumor payloads. Each modified monomer derives from the genetic fusion of two distinct modules, namely the heavy chain of human ferritin (HFt) and a stabilizing/protective PAS polypeptide sequence rich in proline (P), serine (S), and alanine (A) residues. Two genetically fused protein constructs containing PAS polymers with 40- and 75-residue lengths, respectively, were compared. They were produced and purified as recombinant proteins in Escherichia coli at high yields. Both preparations were highly soluble and stable in vitro as well as in mouse plasma. Size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy results indicated that PASylated ferritins are fully assembled and highly monodispersed. In addition, yields and stability of encapsulated doxorubicin were significantly better for both HFt-PAS proteins than for wild-type HFt. Importantly, PAS sequences considerably prolonged the half-life of HFt in the mouse bloodstream. Finally, our doxorubicin-loaded nanocages preserved the pharmacological activity of the drug. Taken together, these results indicate that both of the developed HFt-PAS fusion proteins are promising nanocarriers for future applications in cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Nanocapsules/chemistry , Alanine/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Drug Stability , Ferritins/chemistry , Half-Life , Humans , Mice, Inbred BALB C , Peptides/chemistry , Polyethylene Glycols/chemistry , Proline/chemistry , Recombinant Fusion Proteins/chemistry , Serine/chemistry
4.
Cell Death Dis ; 15(4): 262, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615026

ABSTRACT

Gliomas are among the most fatal tumors, and the available therapeutic options are very limited. Additionally, the blood-brain barrier (BBB) prevents most drugs from entering the brain. We designed and produced a ferritin-based stimuli-sensitive nanocarrier with high biocompatibility and water solubility. It can incorporate high amounts of the potent topoisomerase 1 inhibitor Genz-644282. Here, we show that this nanocarrier, named The-0504, can cross the BBB and specifically deliver the payload to gliomas that express high amounts of the ferritin/transferrin receptor TfR1 (CD71). Intranasal or intravenous administration of The-0504 both reduce tumor growth and improve the survival rate of glioma-bearing mice. However, nose-to-brain administration is a simpler and less invasive route that may spare most of the healthy tissues compared to intravenous injections. For this reason, the data reported here could pave the way towards a new, safe, and direct ferritin-based drug delivery method for brain diseases, especially brain tumors.


Subject(s)
Ferritins , Glioma , Animals , Mice , Survival Rate , Glioma/drug therapy , Brain , Blood-Brain Barrier
5.
Heliyon ; 9(10): e20770, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860543

ABSTRACT

Background: Cancer is still among the leading causes of death all over the world. Improving chemotherapy and minimizing associated toxicities are major unmet medical needs. Recently, we provided a preliminary preclinical evaluation of a human ferritin (HFt)-based drug carrier (The-0504) that selectively delivers the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors. The-0504 has so far been evaluated on four different human tumor xenotransplant models (breast, colorectal, pancreatic and liver cancers). Methods: Herein, we extend our studies, by: (a) testing DNA damage in vitro, (b) treating eight additional tumor xenograft models in vivo with The-0504; (c) performing pharmacokinetic (PK) studies in rats; and (d) evaluating The-0504 anti-tumor xenotransplant efficacy by optimizing its administration schedule based on PK considerations. Results: Immunofluorescence demonstrated that The-0504 induces foci expressing the DNA double-strand break marker γH2AX. Expression increases up to 4-fold and is more persistent as compared to free Genz-644282. In vivo studies confirmed a remarkable anti-tumor activity of The-0504, resulting in tumor eradication in most murine xenograft models, regardless of embryological origin (e.g. epithelial, mesenchymal or neuroendocrine), and molecular subtypes. PK studies demonstrated a long persistence of The-0504 in rat serum (half-life of about 40 h as compared to 15 h of the free drug), with a 400-fold increase in peak concentrations as compared to the free drug. On this basis, we reduced The-0504 administration frequency from twice to once per week, with no appreciable loss in therapeutic efficacy in mice. Conclusion: The results presented here confirm that The-0504 is highly active against several human tumor xenotransplants, even when administered less frequently than previously reported. The-0504 may be a good candidate for further clinical development in a tumor histotype-agnostic setting.

6.
Biochim Biophys Acta ; 1800(8): 798-805, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20138126

ABSTRACT

BACKGROUND: The widely expressed Dps proteins, so named after the DNA-binding properties of the first characterized member of the family in Escherichia coli, are considered major players in the bacterial response to stress. SCOPE OF REVIEW: The review describes the distinctive features of the "ferritin-like" ferroxidation reaction, which uses hydrogen peroxide as physiological iron oxidant and therefore permits the concomitant removal of the two reactants that give rise to hydroxyl radicals via Fenton chemistry. It also illustrates the structural elements identified to date that render the interaction of some Dps proteins with DNA possible and outlines briefly the significance of Dps-DNA complex formation and of the Dps interaction with other DNA-binding proteins in relation to the organization of the nucleoid and microbial survival. GENERAL SIGNIFICANCE: Understanding in molecular terms the distinctive role of Dps proteins in bacterial resistance to general and specific stress conditions. MAJOR CONCLUSIONS: The state of the art is that the response to oxidative and peroxide-mediated stress is mediated directly by Dps proteins via their ferritin-like activity. In contrast, the response to other stress conditions derives from the concerted interplay of diverse interactions that Dps proteins may establish with DNA and with other DNA-binding proteins.


Subject(s)
Bacterial Proteins/physiology , DNA, Bacterial/metabolism , DNA-Binding Proteins/physiology , Hydrogen Peroxide/pharmacokinetics , Iron/pharmacokinetics , Stress, Physiological/physiology , Adaptation, Biological/genetics , Adaptation, Biological/physiology , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Humans , Hydrogen Peroxide/metabolism , Inactivation, Metabolic/genetics , Inactivation, Metabolic/physiology , Iron/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid , Stress, Physiological/genetics
7.
J Biol Inorg Chem ; 16(6): 869-80, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21547575

ABSTRACT

DNA-binding proteins from starved cells (Dps) differ in the number and position of charged residues along the "ferritin-like" pores that are used by iron to reach the ferroxidase center and the protein cavity. These differences are shown to affect significantly the electrostatic potential at the pores, which determines the extent of cooperativity in the iron uptake kinetics and thereby the mass distribution of the ferric hydroxide micelles inside the protein cavity. These conclusions are of biotechnological value in the preparation of protein-enclosed nanomaterials and are expected to apply also to ferritins. They were reached after characterization of the Dps from Listeria innocua, Helicobacter pylori, Thermosynechococcus elongatus, Escherichia coli, and Mycobacterium smegmatis. The characterization comprised the calculation of the electrostatic potential at the pores, determination of the iron uptake kinetics in the presence of molecular oxygen or hydrogen peroxide, and analysis of the proteins by means of the sedimentation velocity after iron incorporation.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Ferritins/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry , Models, Molecular , Molecular Sequence Data , Oxidants/chemistry , Oxidation-Reduction , Oxygen/chemistry , Protein Conformation , Static Electricity
8.
Extremophiles ; 15(3): 431-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21487935

ABSTRACT

Ferritin from the hyperthermophilic anaerobe Thermotoga maritima, a bacterium of ancient phylogenetic origin, is structurally similar to known bacterial and eukaryotic ferritins: 24 identical subunits assemble into a shell having octahedral symmetry and a Mr of about 460 kDa. T. maritima ferritin (TmFtn), purified to homogeneity as a recombinant protein, contains approximately 2-3 iron atoms and can incorporate efficiently up to 3,500 atoms in the form of a ferric oxy-hydroxide mineral at 80°C, the optimal growth temperature of the bacterium. The 24-mer unexpectedly dissociates reversibly into dimers at low ionic strengths. In turn, dimers re-associate into the native 24-mer assembly at high protein concentrations and upon incorporation of iron micelles containing at least 500 Fe(III). TmFtn uses O(2) as efficient iron oxidant. The reaction stoichiometry is 3-4 O(2):Fe(II) as in all bacterial ferritins. Accordingly no H(2)O(2) is released into solution, a feature reflected in the in vitro ability of TmFtn to reduce significantly iron-mediated oxidative damage to DNA at 80°C. A similar TmFtn-mediated ROS detoxifying role likely occurs in the bacterium which lacks the SOD/catalase defense systems of the aerobic world.


Subject(s)
Bacterial Proteins/metabolism , DNA Damage , DNA, Bacterial/metabolism , Ferritins/metabolism , Iron/metabolism , Oxidative Stress , Thermotoga maritima/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Crystallography, X-Ray , Ferritins/chemistry , Ferritins/genetics , Hot Temperature , Models, Molecular , Molecular Sequence Data , Osmolar Concentration , Oxidation-Reduction , Protein Stability , Protein Structure, Quaternary , Protein Subunits , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , Thermotoga maritima/genetics
9.
Biomedicines ; 9(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34829851

ABSTRACT

Pancreatic cancer (PC) represents an intriguing topic for researchers. To date, the prognosis of metastasized PC is poor with just 7% of patients exceeding a five-year survival period. Thus, molecular modifications of existing drugs should be developed to change the course of the disease. Our previously generated nanocages of Mitoxantrone (MIT) encapsulated in human H-chain Ferritin (HFt), designated as HFt-MP-PASE-MIT, has shown excellent tumor distribution and extended serum half-life meriting further investigation for PC treatment. Thus, in this study, we used the same nano-formulation to test its cytotoxicity using both in vitro and in vivo assays. Interestingly, both encapsulated and free-MIT drugs demonstrated similar killing capabilities on PaCa44 cell line. Conversely, in vivo assessment in a subcutaneous PaCa44 tumor model of PC demonstrated a remarkable capability for encapsulated MIT to control tumor growth and improve mouse survival with a median survival rate of 65 vs. 33 days for loaded and free-MIT, respectively. Interestingly, throughout the course of mice treatment, MIT encapsulation did not present any adverse side effects as confirmed by histological analysis of various murine tissue organs and body mass weights. Our results are promising and pave the way to effective PC targeted chemotherapy using our HFt nanodelivery platforms.

10.
J Exp Clin Cancer Res ; 40(1): 63, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568214

ABSTRACT

BACKGROUND: Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies. METHODS: CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents. RESULTS: In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer. CONCLUSIONS: Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy.


Subject(s)
Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Ferritins/metabolism , Nanostructures/chemistry , Neoplasms/genetics , Receptors, Transferrin/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Rats
11.
J Am Chem Soc ; 132(10): 3621-7, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20170158

ABSTRACT

Highly symmetrical protein cage architectures from three different iron storage proteins, heavy and light human ferritin chains (HuHFt and HuLFt) and ferritin from the hyperthemophilic bacterium Pyrococcus furiosus (PfFt), have been used as models for understanding the molecular basis of silver ion deposition and metal core formation inside the protein cavity. Biomineralization using protein cavities is an important issue for the fabrication of biometamaterials under mild synthetic conditions. Silver nanoparticles (AgNPs) were produced with high yields within PfFt but not within HuHFt and HuLFt. To explain the molecular basis of silver incorporation, the X-ray crystal structure of Ag-containing PfFt has been solved. This is the first structure of a silver containing ferritin reported to date, and it revealed the presence of specific binding and nucleation sites of Ag(I) that are not conserved in other ferritin templates. The AgNP encapsulated by PfFt were further characterized by the combined use of different physical-chemical techniques. These showed that the AgNPs are endowed with a narrow size distribution (2.1 +/- 0.4 nm), high stability in water solution at millimolar concentration, and high thermal stability. These properties make the AgNP obtained within PftFt exploitable for a range of applications, in fields as diverse as catalysis in water, preparation of metamaterials, and in vivo diagnosis and antibacterial or tumor therapy.


Subject(s)
Ferritins/chemistry , Metal Nanoparticles/chemistry , Pyrococcus furiosus/chemistry , Silver/chemistry , Cations, Monovalent/chemistry , Crystallography, X-Ray , Ferric Compounds/chemistry , Ferritins/metabolism , Kinetics , Microscopy, Electron, Transmission , Models, Molecular , Organometallic Compounds/chemistry , Oxidation-Reduction , Pyrococcus furiosus/metabolism , Scattering, Small Angle , Surface Plasmon Resonance , Ultracentrifugation
12.
Chemistry ; 16(2): 709-17, 2010 Jan 11.
Article in English | MEDLINE | ID: mdl-19859920

ABSTRACT

A comparative analysis of the magnetic properties of iron oxide nanoparticles grown in the cavity of the DNA-binding protein from starved cells of the bacterium Listeria innocua, LiDps, and of its triple-mutant lacking the catalytic ferroxidase centre, LiDps-tm, is presented. TEM images and static and dynamic magnetic and electron magnetic resonance (EMR) measurements reveal that, under the applied preparation conditions, namely alkaline pH, high temperature (65 degrees C), exclusion of oxygen, and the presence of hydrogen peroxide, maghemite and/or magnetite nanoparticles with an average diameter of about 3 nm are mineralised inside the cavities of both LiDps and LiDps-tm. The magnetic nanoparticles (MNPs) thus formed show similar magnetic properties, with superparamagnetic behaviour above 4.5 K and a large magnetic anisotropy. Interestingly, in the EMR spectra an absorption at half-field is observed, which can be considered as a manifestation of the quantum behaviour of the MNPs. These results indicate that Dps proteins can be advantageously used for the production of nanomagnets at the interface between molecular clusters and traditional MNPs and that the presence of the ferroxidase centre, though increasing the efficiency of nanoparticle formation, does not affect the nature and fine structure of the MNPs. Importantly, the self-organisation of MNP-containing Dps on HRTEM grids suggests that Dps-enclosed MNPs can be deposited on surfaces in an ordered fashion.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Ferric Compounds/chemical synthesis , Listeria/metabolism , Nanoparticles , Bacterial Proteins/ultrastructure , Catalysis , Ceruloplasmin/metabolism , DNA-Binding Proteins/ultrastructure , Ferric Compounds/metabolism , Listeria/genetics
13.
Pharmaceutics ; 12(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092088

ABSTRACT

Gastrointestinal tumors, including pancreatic and colorectal cancers, represent one of the greatest public health issues worldwide, leading to a million global deaths. Recent research demonstrated that the human heavy chain ferritin (HFt) can encapsulate different types of drugs in its cavity and can bind to its receptor, CD71, in several solid and hematological tumors, thus highlighting the potential use of ferritin for tumor-targeting therapies. Here, we describe the development and characterization of a novel nanomedicine based on the HFt that is named The-0504. In particular, this novel system is a nano-assembly comprising an engineered version of HFt that entraps about 80 molecules of a potent, wide-spectrum, non-camptothecin topoisomerase I inhibitor (Genz-644282). The-0504 can be produced by a standardized pre-industrial process as a pure and homogeneously formulated product with favourable lyophilization properties. The preliminary anticancer activity was evaluated in cultured cancer cells and in a mouse model of pancreatic cancer. Overall results reported here make The-0504 a candidate for further preclinical development against CD-71 expressing deadly tumors.

14.
Biochim Biophys Acta ; 1780(2): 226-32, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18166161

ABSTRACT

Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.


Subject(s)
Bacterial Proteins/physiology , DNA-Binding Proteins/physiology , Respiratory Burst , Salmonella typhimurium/physiology , Superoxide Dismutase/physiology , Animals , Bacterial Proteins/genetics , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Hydrogen Peroxide/pharmacology , Mice , Mutation , Phagocytosis , Reactive Oxygen Species/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Superoxide Dismutase/genetics , Superoxides/metabolism
15.
Nucleic Acids Res ; 35(7): 2247-56, 2007.
Article in English | MEDLINE | ID: mdl-17371778

ABSTRACT

The Helicobacter pylori neutrophil-activating protein (HP-NAP), a member of the Dps family, is a fundamental virulence factor involved in H.pylori-associated disease. Dps proteins protect bacterial DNA from oxidizing radicals generated by the Fenton reaction and also from various other damaging agents. DNA protection has a chemical component based on the highly conserved ferroxidase activity of Dps proteins, and a physical one based on the capacity of those Dps proteins that contain a positively charged N-terminus to bind and condense DNA. HP-NAP does not possess a positively charged N-terminus but, unlike the other members of the family, is characterized by a positively charged protein surface. To establish whether this distinctive property could be exploited to bind DNA, gel shift, fluorescence quenching and atomic force microscopy (AFM) experiments were performed over the pH range 6.5-8.5. HP-NAP does not self-aggregate in contrast to Escherichia coli Dps, but is able to bind and even condense DNA at slightly acid pH values. The DNA condensation capacity acts in concert with the ferritin-like activity and could be used to advantage by H.pylori to survive during host-infection and other stress challenges. A model for DNA binding/condensation is proposed that accounts for all the experimental observations.


Subject(s)
Bacterial Proteins/chemistry , DNA/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , DNA/metabolism , DNA/ultrastructure , Deoxyribonuclease I/metabolism , Escherichia coli Proteins/chemistry , Hydrogen-Ion Concentration , Hydroxyl Radical/metabolism , Microscopy, Atomic Force , Models, Molecular , Protein Binding
16.
Nat Commun ; 10(1): 1121, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850661

ABSTRACT

Human transferrin receptor 1 (CD71) guarantees iron supply by endocytosis upon binding of iron-loaded transferrin and ferritin. Arenaviruses and the malaria parasite exploit CD71 for cell invasion and epitopes on CD71 for interaction with transferrin and pathogenic hosts were identified. Here, we provide the molecular basis of the CD71 ectodomain-human ferritin interaction by determining the 3.9 Å resolution single-particle cryo-electron microscopy structure of their complex and by validating our structural findings in a cellular context. The contact surfaces between the heavy-chain ferritin and CD71 largely overlap with arenaviruses and Plasmodium vivax binding regions in the apical part of the receptor ectodomain. Our data account for transferrin-independent binding of ferritin to CD71 and suggest that select pathogens may have adapted to enter cells by mimicking the ferritin access gate.


Subject(s)
Antigens, CD/chemistry , Apoferritins/chemistry , Protozoan Proteins/chemistry , Receptors, Transferrin/chemistry , Receptors, Virus/chemistry , Transferrin/chemistry , Viral Envelope Proteins/chemistry , Antigens, CD/genetics , Antigens, CD/metabolism , Apoferritins/genetics , Apoferritins/metabolism , Arenaviruses, New World/genetics , Arenaviruses, New World/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Hemochromatosis Protein/chemistry , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Humans , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Transferrin/genetics , Transferrin/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
17.
J Exp Clin Cancer Res ; 38(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606223

ABSTRACT

BACKGROUND: The possibility to combine Low Intensity UltraSound (LIUS) and Nanoparticles (NP) could represent a promising strategy for drugs delivery in tumors difficult to treat overcoming resistance to therapies. On one side the NP can carry drugs that specifically target the tumors on the other the LIUS can facilitate and direct the delivery to the tumor cells. In this study, we investigated whether Very Low Intensity UltraSound (VLIUS), at intensities lower than 120 mW/cm2, might constitute a novel strategy to improve delivery to tumor cells. Thus, in order to verify the efficacy of this novel modality in terms of increase selective uptake in tumoral cells and translate speedily in clinical practice, we investigated VLIUS in three different in vitro experimental tumor models and normal cells adopting three different therapeutic strategies. METHODS: VLIUS at different intensities and exposure time were applied to tumor and normal cells to evaluate the efficiency in uptake of labeled human ferritin (HFt)-based NP, the delivery of NP complexed Firefly luciferase reported gene (lipoplex-LUC), and the tumor-killing of chemotherapeutic agent. RESULTS: Specifically, we found that specific VLIUS intensity (120 mW/cm2) increases tumor cell uptake of HFt-based NPs at specific concentration (0.5 mg/ml). Similarly, VLIUS treatments increase significantly tumor cells delivery of lipoplex-LUC cargos. Furthermore, of interest, VLIUS increases tumor killing of chemotherapy drug trabectedin in a time dependent fashion. Noteworthy, VLIUS treatments are well tolerated in normal cells with not significant effects on cell survival, NPs delivery and drug-induced toxicity, suggesting a tumor specific fashion. CONCLUSIONS: Our data shed novel lights on the potential application of VLIUS for the design and development of novel therapeutic strategies aiming to efficiently deliver NP loaded cargos or anticancer drugs into more aggressive and unresponsive tumors niche.


Subject(s)
Antineoplastic Agents/therapeutic use , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Drug Delivery Systems/methods , Nanoparticles/metabolism , Ultrasonography/methods , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colonic Neoplasms/pathology , Humans
18.
J Control Release ; 275: 177-185, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29474961

ABSTRACT

A genetically engineered human ferritin heavy chain (HFt)-based construct has been recently shown by our group to efficiently entrap and deliver doxorubicin to cancer cells. This construct, named HFt-MP-PAS, contained a tumor-selective sequence (MP) responsive to proteolytic cleavage by tumor proteases (MMPs), located between each HFt subunit and an outer shielding polypeptide sequence rich in proline (P), serine (S) and alanine (A) residues (PAS). HFt-MP-PAS displayed excellent therapeutic efficacy in xenogenic pancreatic and head and neck cancer models in vivo, leading to a significant increase in overall animal survivals. Here we report a new construct obtained by the genetic insertion of two glutamate residues in the PAS sequence of HFt-MP-PAS. Such new construct, named HFt-MP-PASE, is characterized by improved performances as drug biodistribution in a xenogenic pancreatic cancer model in vivo. Moreover, HFt-MP-PASE efficiently encapsulates the anti-cancer drug mitoxantrone (MIT), and the resulting MIT-loaded nanoparticles proved to be more soluble and monodispersed than the HFt-MP-PAS counterparts. Importantly, in vitro MIT-loaded HFt-MP-PASE kills several cancer cell lines of different origin (colon, breast, sarcoma and pancreas) at least as efficiently as the free drug. Finally, our MIT loaded protein nanocages allowed in vivo an impressive incrementing of the drug accumulation in the tumor with respect to the free drug.


Subject(s)
Antineoplastic Agents/administration & dosage , Apoferritins/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Glutamic Acid/administration & dosage , Mitoxantrone/administration & dosage , Nanoparticles/administration & dosage , Cell Line, Tumor , Humans , Tissue Distribution
19.
FEBS J ; 273(21): 4913-28, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17018059

ABSTRACT

DNA-binding proteins from starved cells (Dps proteins) protect bacteria primarily from oxidative damage. They are composed of 12 identical subunits assembled with 23-symmetry to form a compact cage-like structure known to be stable at temperatures > 70 degrees C and over a wide pH range. Thermosynechococcus elongatus Dps thermostability is increased dramatically relative to mesophilic Dps proteins. Hydrophobic interactions at the dimeric and trimeric interfaces called Dps-like are replaced by salt bridges and hydrogen bonds, a common strategy in thermophiles. Moreover, the buried surface area at the least-extended Dps-like interface is significantly increased. A peculiarity of T. elongatus Dps is the presence of a chloride ion coordinated with threefold symmetry-related arginine residues lining the opening of the Dps-like pore toward the internal cavity. T. elongatus Dps conserves the unusual intersubunit ferroxidase centre that allows the Dps protein family to oxidize Fe(II) with hydrogen peroxide, thereby inhibiting free radical production via Fenton chemistry. This catalytic property is of special importance in T. elongatus (which lacks the catalase gene) in the protection of DNA and photosystems I and II from hydrogen peroxide-mediated oxidative damage.


Subject(s)
Antioxidants/chemistry , Bacterial Proteins/chemistry , Cyanobacteria/metabolism , DNA-Binding Proteins/chemistry , Amino Acid Sequence , Ceruloplasmin/chemistry , Dimerization , Hydrogen Bonding , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Hydroxyl Radical/chemistry , Iron/chemistry , Kinetics , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Protein Structure, Tertiary , Temperature
20.
Nucleic Acids Res ; 32(19): 5935-44, 2004.
Article in English | MEDLINE | ID: mdl-15534364

ABSTRACT

Escherichia coli Dps (DNA-binding proteins from starved cells) is the prototype of a DNA-protecting protein family expressed by bacteria under nutritional and oxidative stress. The role of the lysine-rich and highly mobile Dps N-terminus in DNA protection has been investigated by comparing the self-aggregation and DNA-condensation capacity of wild-type Dps and two N-terminal deletion mutants, DpsDelta8 and DpsDelta18, lacking two or all three lysine residues, respectively. Gel mobility and atomic force microscopy imaging showed that at pH 6.3, both wild type and DpsDelta8 self-aggregate, leading to formation of oligomers of variable size, and condense DNA with formation of large Dps-DNA complexes. Conversely, DpsDelta18 does not self-aggregate and binds DNA without causing condensation. At pH 8.2, DpsDelta8 and DpsDelta18 neither self-aggregate nor cause DNA condensation, a behavior also displayed by wild-type Dps at pH 8.7. Thus, Dps self-aggregation and Dps-driven DNA condensation are parallel phenomena that reflect the properties of the N-terminus. DNA protection against the toxic action of Fe(II) and H2O2 is not affected by the N-terminal deletions either in vitro or in vivo, in accordance with the different structural basis of this property.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Bacterial Proteins/genetics , DNA/chemistry , DNA/ultrastructure , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Hydrogen-Ion Concentration , Hydroxyl Radical/metabolism , Microscopy, Atomic Force , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL