Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Neurosurg Focus ; 42(5): E9, 2017 May.
Article in English | MEDLINE | ID: mdl-28463622

ABSTRACT

OBJECTIVE The move toward better, more effective optical visualization in the field of neurosurgery has been a focus of technological innovation. In this study, the authors' objectives are to describe the feasibility and safety of a new robotic optical platform, namely, the robotically operated video optical telescopic-microscope (ROVOT-m), in cranial microsurgical applications. METHODS A prospective database comprising patients who underwent a cranial procedure between April 2015 and September 2016 was queried, and the first 200 patients who met the inclusion criteria were selected as the cohort for a retrospective chart review. Only adults who underwent microsurgical procedures in which the ROVOT-m was used were considered for the study. Preoperative, intraoperative, and postoperative data were retrieved from electronic medical records. The authors address the feasibility and safety of the ROVOT-m by studying various intraoperative variables and by reporting perioperative morbidity and mortality, respectively. To assess the learning curve, cranial procedures were categorized into 6 progressively increasing complexity groups. The main categories of pathology were I) intracerebral hemorrhages (ICHs); II) intraaxial tumors involving noneloquent regions or noncomplex extraaxial tumors; III) intraaxial tumors involving eloquent regions; IV) skull base pathologies; V) intraventricular lesions; and VI) cerebrovascular lesions. In addition, the entire cohort was evenly divided into early and late cohorts. RESULTS The patient cohort comprised 104 female (52%) and 96 male (48%) patients with a mean age of 56.7 years. The most common pathological entities encountered were neoplastic lesions (153, 76.5%), followed by ICH (20, 10%). The distribution of cases by complexity categories was 11.5%, 36.5%, 22%, 20%, 3.5%, and 6.5% for Categories I, II, II, IV, V, and VI, respectively. In all 200 cases, the surgical goal was achieved without the need for intraoperative conversion. Overall, the authors encountered 3 (1.5%) major neurological morbidities and 6 (3%) 30-day mortalities. Four of the 6 deaths were in the ICH group, resulting in a 1% mortality rate for the remainder of the cohort when excluding these patients. None of the intraoperative complications were considered to be attributable to the visualization provided by the ROVOT-m. When comparing the early and late cohorts, the authors noticed an increase in the proportion of higher-complexity surgeries (Categories IV-VI), from 23% in the early cohort, to 37% in the late cohort (p = 0.030). In addition, a significant reduction in operating room setup time was demonstrated (p < 0.01). CONCLUSIONS The feasibility and safety of the ROVOT-m was demonstrated in a wide range of cranial microsurgical applications. The authors report a gradual increase in case complexity over time, representing an incremental acquisition of experience with this technology. A learning curve of both setup and execution phases should be anticipated by new adopters of the robot system. Further prospective studies are required to address the efficacy of ROVOT-m. This system may play a role in neurosurgery as an integrated platform that is applicable to a variety of cranial procedures.


Subject(s)
Microsurgery , Neurosurgery/instrumentation , Neurosurgical Procedures , Robotics , Cerebral Angiography/methods , Cerebral Hemorrhage/surgery , Female , Humans , Intracranial Aneurysm/surgery , Intraoperative Complications/prevention & control , Intraoperative Complications/surgery , Male , Microsurgery/adverse effects , Microsurgery/instrumentation , Microsurgery/methods , Neurosurgical Procedures/instrumentation , Neurosurgical Procedures/methods , Prospective Studies , Retrospective Studies , Skull/surgery
2.
N Engl J Med ; 367(26): 2471-81, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23234472

ABSTRACT

BACKGROUND: Intracranial-pressure monitoring is considered the standard of care for severe traumatic brain injury and is used frequently, but the efficacy of treatment based on monitoring in improving the outcome has not been rigorously assessed. METHODS: We conducted a multicenter, controlled trial in which 324 patients 13 years of age or older who had severe traumatic brain injury and were being treated in intensive care units (ICUs) in Bolivia or Ecuador were randomly assigned to one of two specific protocols: guidelines-based management in which a protocol for monitoring intraparenchymal intracranial pressure was used (pressure-monitoring group) or a protocol in which treatment was based on imaging and clinical examination (imaging-clinical examination group). The primary outcome was a composite of survival time, impaired consciousness, and functional status at 3 months and 6 months and neuropsychological status at 6 months; neuropsychological status was assessed by an examiner who was unaware of protocol assignment. This composite measure was based on performance across 21 measures of functional and cognitive status and calculated as a percentile (with 0 indicating the worst performance, and 100 the best performance). RESULTS: There was no significant between-group difference in the primary outcome, a composite measure based on percentile performance across 21 measures of functional and cognitive status (score, 56 in the pressure-monitoring group vs. 53 in the imaging-clinical examination group; P=0.49). Six-month mortality was 39% in the pressure-monitoring group and 41% in the imaging-clinical examination group (P=0.60). The median length of stay in the ICU was similar in the two groups (12 days in the pressure-monitoring group and 9 days in the imaging-clinical examination group; P=0.25), although the number of days of brain-specific treatments (e.g., administration of hyperosmolar fluids and the use of hyperventilation) in the ICU was higher in the imaging-clinical examination group than in the pressure-monitoring group (4.8 vs. 3.4, P=0.002). The distribution of serious adverse events was similar in the two groups. CONCLUSIONS: For patients with severe traumatic brain injury, care focused on maintaining monitored intracranial pressure at 20 mm Hg or less was not shown to be superior to care based on imaging and clinical examination. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01068522.).


Subject(s)
Brain Injuries/physiopathology , Brain/diagnostic imaging , Intracranial Hypertension/diagnosis , Intracranial Pressure , Monitoring, Physiologic , Neurologic Examination , Adult , Brain/physiopathology , Brain Injuries/complications , Brain Injuries/mortality , Female , Humans , Intracranial Hypertension/etiology , Kaplan-Meier Estimate , Length of Stay , Male , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Survival Rate , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
3.
J Neurol Surg B Skull Base ; 82(5): 576-592, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34513565

ABSTRACT

Objective The aim of this study is to determine feasibility of incorporating three-dimensional (3D) tractography into routine skull base surgery planning and analyze our early clinical experience in a subset of anterior cranial base meningiomas (ACM). Methods Ninety-nine skull base endonasal and transcranial procedures were planned in 94 patients and retrospectively reviewed with a further analysis of the ACM subset. Main Outcome Measures (1) Automated generation of 3D tractography; (2) co-registration 3D tractography with computed tomography (CT), CT angiography (CTA), and magnetic resonance imaging (MRI); and (3) demonstration of real-time manipulation of 3D tractography intraoperatively. ACM subset: (1) pre- and postoperative cranial nerve function, (2) qualitative assessment of white matter tract preservation, and (3) frontal lobe fluid-attenuated inversion recovery (FLAIR) signal abnormality. Results Automated 3D tractography, with MRI, CT, and CTA overlay, was produced in all cases and was available intraoperatively. ACM subset : 8 (44%) procedures were performed via a ventral endoscopic endonasal approach (EEA) corridor and 12 (56%) via a dorsal anteromedial (DAM) transcranial corridor. Four cases (olfactory groove meningiomas) were managed with a combined, staged approach using ventral EEA and dorsal transcranial corridors. Average tumor volume reduction was 90.3 ± 15.0. Average FLAIR signal change was -30.9% ± 58.6. 11/12 (92%) patients (DAM subgroup) demonstrated preservation of, or improvement in, inferior fronto-occipital fasciculus volume. Functional cranial nerve recovery was 89% (all cases). Conclusion It is feasible to incorporate 3D tractography into the skull base surgical armamentarium. The utility of this tool in improving outcomes will require further study.

4.
Oper Neurosurg (Hagerstown) ; 19(4): E343-E356, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32386312

ABSTRACT

BACKGROUND: Frontal subcortical and intraventricular pathologies are traditionally accessed via transcortical or interhemispheric-transcallosal corridors. OBJECTIVE: To describe the microsurgical subcortical anatomy of the superior frontal sulcus (SFS) corridor. METHODS: Cadaveric dissections were undertaken and correlated with magnetic resonance imaging/diffusion-tensor imaging-Tractography. Surgical cases demonstrated clinical applicability. RESULTS: SFS was divided into the following divisions: proximal, precentral sulcus to coronal suture; middle, 3-cm anterior to coronal suture; and distal, middle division to the orbital crest. Anatomy was organized as layered circumferential rings projecting radially towards the ventricles: (1) outer ring: at the level of the SFS, the following lengths were measured: (A) precentral sulcus to coronal suture = 2.29 cm, (B) frontal bone projection of superior sagittal sinus (SSS) to SFS = 2.37 cm, (C) superior temporal line to SFS = 3.0 cm, and (D) orbital crest to distal part of SFS = 2.32 cm; and (2) inner ring: (a) medial to SFS, U-fibers, frontal aslant tract (FAT), superior longitudinal fasciculus I (SLF-I), and cingulum bundle, (b) lateral to SFS, U-fibers, (SLF-II), claustrocortical fibers (CCF), and inferior fronto-occipital fasciculus, and (c) intervening fibers, FAT, corona radiata, and CCF. The preferred SFS parafascicular entry point (SFSP-EP) also referred to as the Kassam-Monroy entry point (KM-EP) bisects the distance between the midpupillary line and the SSS and has the following coordinates: x = 2.3 cm (lateral to SSS), y ≥ 3.5 cm (anterior to CS), and z = parallel corona radiata and anterior limb of the internal capsule. CONCLUSION: SFS corridor can be divided into lateral, medial, and intervening white matter tract segments. Based on morphometric assessment, the optimal SFSP-EP is y ≥ 3.5 cm, x = 2.3 cm, and z = parallel to corona radiata and anterior limb of the internal capsule.


Subject(s)
Cerebrum , White Matter , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Prefrontal Cortex , White Matter/diagnostic imaging , White Matter/surgery
5.
Oper Neurosurg (Hagerstown) ; 19(4): E357-E369, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32392326

ABSTRACT

BACKGROUND: Kocher's point (KP) and its variations have provided standard access to the frontal horn (FH) for over a century. Anatomic understanding of white matter tracts (WMTs) has evolved, now positioning us to better inform the optimal FH trajectory. OBJECTIVE: To (1) undertake a literature review analyzing entry points (EPs) to the FH; (2) introduce a purpose-built WMT-founded superior frontal sulcus parafascicular (SFSP)-EP also referred to as the Kassam-Monroy entry point (KM-EP); and (3) compare KM-EP with KP and variants with respect to WMTs. METHODS: (1) Literature review (PubMed database, 1892-2018): (a) stratification based on the corridor: i. ventricular catheter; ii. through-channel endoscopic; or iii. portal; (b) substratification based on intent: i. preoperatively planned or ii. intraoperative (postdural opening) for urgent ventricular drainage. (2) Anatomic comparisons of KM-EP, KP, and variants via (a) cadaveric dissections and (b) magnetic resonance-diffusion tensor imaging computational 3D modeling. RESULTS: A total of 31 studies met inclusion criteria: (a) 9 utilized KP coordinate (1 cm anterior to the coronal suture (y-axis) and 3 cm lateral of the midline (x-axis) approximated by the midpupillary line) and 22 EPs represented variations. All 31 traversed critical subcortical WMTs, specifically the frontal aslant tract, superior longitudinal fasciculus II, and inferior fronto-occipital fasciculus, whereas KM-EP (x = 2.3, y = 3.5) spares these WMTs. CONCLUSION: KP (x = 3, y = 1) conceived over a century ago, prior to awareness of WMTs, as well as its variants, anatomically place critical WMTs at risk. The KM-EP (x = 2.3, y = 3.5) is purpose built and founded on WMTs, representing anatomically safe access to the FH. Correlative clinical safety, which will be directly proportional to the size of the corridor, is yet to be established in prospective studies.


Subject(s)
White Matter , Diffusion Tensor Imaging , Dissection , Humans , Prefrontal Cortex , Prospective Studies , White Matter/diagnostic imaging , White Matter/surgery
6.
World Neurosurg ; 134: e422-e431, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31655241

ABSTRACT

BACKGROUND: Endoscopic endonasal approaches to access the sellar and parasellar regions are challenging in the face of anatomical variations or pathologic conditions. We propose an anatomically-based model including the orbitosellar line (OSL), critical oblique foramen line (COFL), and paramedial anterior line (PAL) facilitating safe, superficial-to-deep dissection triangulating upon the medial opticocarotid recess. METHODS: Five cadaveric heads were dissected to systematically expose the OSL, COFL, and PAL, illustrated with image guidance. Application of the coordinate system and a 6-step dissection sequence is described. RESULTS: The coordinate system consists of 1) the OSL, connecting a) the anterior orbital point, junction of the anterior buttress of the middle turbinate with the agger nasi region, located 34.3 ± 0.9 mm above the intersection of the vertical plane of the lacrimal crest, and the orthogonal plane of the maxillo-ethmoidal suture; b) the posterior orbital point, junction of the optic canal with the lamina papyracea, located 4 ± 0.7 mm below the posterior ethmoidal artery; and c) the medial opticocarotid recess; 2) COFL (15 ± 2.8 mm), connecting the palatovaginal canal, vidian canal, and foramen rotundum; and 3) PAL (39 ± 0.06 mm), connecting the vidian canal with the posterior ethmoidal artery. CONCLUSIONS: OSL, COFL, and PAL form an anatomically-based model for the systematic exposure when accessing the parasellar and sellar regions. Preliminary anatomical data suggest that this model may be of value when normal anatomy is distorted by pathology or anatomic variations.


Subject(s)
Nasal Cavity/anatomy & histology , Neuroendoscopy/methods , Neuronavigation/methods , Skull Base/anatomy & histology , Cadaver , Humans , Nasal Cavity/diagnostic imaging , Nasal Cavity/surgery , Skull Base/diagnostic imaging , Skull Base/surgery
7.
J Neurosurg ; 111(1): 124-31, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19249934

ABSTRACT

Bleeding of an arteriovenous malformation (AVM) following stereotactic radiosurgery (SRS) is a known risk during the latency interval, but hemorrhage in the 30-day period following radiosurgery rarely has been reported in the literature. The authors present the case of a 57-year-old man who underwent Gamma Knife surgery for a large AVM, and they provide radiographic documentation of a thrombus in the primary draining vein immediately preceding an AVM hemorrhage within 9 days after radiosurgery. They postulate that the pathophysiology of an AVM hemorrhage in the acute period following SRS is related to an association among tissue irradiation, acute inflammatory response, and vessel thrombosis. The authors also review the literature on risk factors for hemorrhage due to untreated and radiosurgically treated AVMs. Recent evidence on the role of inflammation in the pathogenesis of AVMs and the pathophysiology of AVM rupture is presented. Inflammatory markers have been demonstrated in brain AVM tissue, and the association between inflammation and AVM hemorrhage has been established. There is an acute inflammatory response following tissue irradiation, resulting in structural and functional vascular changes that can lead to vessel thrombosis. Early hemorrhage following radiosurgical treatment of AVMs may be related to the acute inflammatory response and associated vascular changes that occur in irradiated tissue. In the first stage of a planned 2-stage Gamma Knife treatment for a large AVM in the featured case, the superior posteromedial portion of the primary draining vein was included in the treatment field. The authors present the planning images and subsequent CT scans demonstrating a new venous thrombus in the primary draining vein. An acute inflammatory response following radiosurgery with resultant acute venous thrombus formation and venous obstruction is proposed as one mechanism of an AVM hemorrhage in this patient. Radiographic evidence of the time course of thrombosis and hemorrhage supports the hypothesis that acute venous obstruction is a cause of intracranial hemorrhage.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Intracranial Arteriovenous Malformations/surgery , Intracranial Thrombosis/diagnostic imaging , Postoperative Complications/diagnostic imaging , Radiosurgery , Acute Disease , Cerebral Angiography , Cerebral Veins/diagnostic imaging , Fatal Outcome , Humans , Male , Middle Aged , Tomography, X-Ray Computed
8.
Oper Neurosurg (Hagerstown) ; 17(2): 208-226, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30753637

ABSTRACT

BACKGROUND: Endoscopic and microneurosurgical approaches to third ventricular lesions are commonly performed under general anesthesia. OBJECTIVE: To report our initial experience with awake transsulcal parafascicular corridor surgery (TPCS) of the third ventricle and its safety, feasibility, and limitations. METHODS: A total of 12 cases are reviewed: 6 colloid cysts, 2 central neurocytomas, 1 papillary craniopharyngioma, 1 basal ganglia glioblastoma, 1 thalamic glioblastoma, and 1 ependymal cyst. Lesions were approached using TPCS through the superior frontal sulcus. Pre-, intra-, and postoperative neurocognitive (NC) testing were performed on all patients. RESULTS: No cases required conversion to general anesthesia. Awake anesthesia changed intraoperative management in 4/12 cases with intraoperative cognitive changes that required port re-positioning; 3/4 recovered. Average length of stay (LOS) was 6.1 d ± 6.6. Excluding 3 outliers who had preoperative NC impairment, the average LOS was 2.5 d ± 1.2. Average operative time was 3.00 h ± 0.44. Average awake anesthesia time was 5.05 h ± 0.54. There were no mortalities. CONCLUSION: This report demonstrated the feasibility and safety of awake third ventricular surgery, and was not limited by pathology, size, or vascularity. The most significant factor impacting LOS was preoperative NC deficit. The most significant risk factor predicting a permanent NC deficit was preoperative 2/3 domain impairment combined with radiologic evidence of invasion of limbic structures - defined as a "NC resilience/reserve" in our surgical algorithm. Larger efficacy studies will be required to demonstrate the validity of the algorithm and impact on long-term cognitive outcomes, as well as generalizability of awake TPCS for third ventricular surgery.


Subject(s)
Cerebral Ventricle Neoplasms/surgery , Conscious Sedation/methods , Neurosurgical Procedures/methods , Third Ventricle/surgery , Adult , Aged , Feasibility Studies , Female , Humans , Male , Microsurgery/methods , Middle Aged , Treatment Outcome , Young Adult
10.
J Pediatr Epilepsy ; 1(4): 211-219, 2012.
Article in English | MEDLINE | ID: mdl-24563805

ABSTRACT

Identify seizure onset electrodes that need to be resected for seizure freedom in children undergoing intracranial electroencephalography recording for treatment of medically refractory epilepsy. All children undergoing intracranial electroencephalography subdural grid electrode placement at the Children's Hospital of Philadelphia from 2002-2008 were asked to enroll. We utilized intraoperative pictures to determine the location of the electrodes and define the resection cavity. A total of 15 patients had surgical fields that allowed for complete identification of the electrodes over the area of resection. Eight of 15 patients were seizure free after a follow up of 1.7 to 8 yr. Only one seizure-free patient had complete resection of all seizure onset associated tissue. Seizure free patients had resection of 64.1% of the seizure onset electrode associated tissue, compared to 35.2% in the not seizure free patients (p=0.05). Resection of tissue associated with infrequent seizure onsets did not appear to be important for seizure freedom. Resecting ≥ 90% of the electrodes from the predominant seizure contacts predicted post-operative seizure freedom (p=0.007). The best predictor of seizure freedom was resecting ≥ 90% of tissue involved in majority of a patient's seizures. Resection of tissue under infrequent seizure onset electrodes was not necessary for seizure freedom.

11.
Neurosurgery ; 71(6): 1055-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22986600

ABSTRACT

BACKGROUND: Although in the developed world the intracranial pressure (ICP) monitor is considered the standard of care for patients with severe traumatic brain injury (TBI), its usefulness to direct treatment decisions has never been tested rigorously. OBJECTIVE: The primary focus was to conduct a high-quality, randomized, controlled trial to determine whether ICP monitoring used to direct TBI treatment improves patient outcomes. By providing education, equipment, and structure, the project will enhance the research capacity of the collaborating investigators and will foster the collaborations established during earlier studies. METHODS: Study centers were selected that routinely treated ICP based on clinical examination and computed tomography imaging using internal protocols. We randomized patients to either an ICP monitor group or an imaging and clinical examination group. Treatment decisions for the ICP monitor group are guided by ICP monitoring based on established guidelines. Treatment decisions for the imaging and clinical examination group are made using a single protocol derived from those previously being used at those centers. EXPECTED OUTCOMES: There are 2 study hypotheses: (1) patients with severe TBI whose acute care treatment is managed using ICP monitors will have improved outcomes and 2) incorporating ICP monitoring in the care of patients with severe TBI will minimize complications and decrease length of intensive care unit stay. DISCUSSION: This clinical trial tests the effectiveness of a management protocol based on technology considered pivotal to brain trauma treatment in the developed world: the ICP monitor. A randomized, controlled trial of ICP monitoring has never been performed-a critical gap in the evidence base that supports the role of ICP monitoring in TBI care. As such, the results of this randomized, controlled trial will have global implications regardless of the level of development of the trauma system.


Subject(s)
Brain Injuries/epidemiology , Brain Injuries/therapy , Randomized Controlled Trials as Topic/methods , Adult , Aged , Disability Evaluation , Female , Humans , Intracranial Pressure/physiology , Latin America/epidemiology , Male , Middle Aged , Multicenter Studies as Topic , Neuropsychological Tests , Treatment Outcome
12.
J Neurotrauma ; 29(11): 2022-9, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22435793

ABSTRACT

In patients with severe traumatic brain injury (TBI), the influence on important outcomes of the use of information from intracranial pressure (ICP) monitoring to direct treatment has never been tested in a randomized controlled trial (RCT). We are conducting an RCT in six trauma centers in Latin America to test this question. We hypothesize that patients randomized to ICP monitoring will have lower mortality and better outcomes at 6-months post-trauma than patients treated without ICP monitoring. We selected three centers in Bolivia to participate in the trial, based on (1) the absence of ICP monitoring, (2) adequate patient accession and data collection during the pilot phase, (3) preliminary institutional review board approval, and (4) the presence of equipoise about the value of ICP monitoring. We conducted extensive training of site personnel, and initiated the trial on September 1, 2008. Subsequently, we included three additional centers. A total of 176 patients were entered into the trial as of August 31, 2010. Current enrollment is 81% of that expected. The trial is expected to reach its enrollment goal of 324 patients by September of 2011. We are conducting a high-quality RCT to answer a question that is important globally. In addition, we are establishing the capacity to conduct strong research in Latin America, where TBI is a serious epidemic. Finally, we are demonstrating the feasibility and utility of international collaborations that share resources and unique patient populations to conduct strong research about global public health concerns.


Subject(s)
Brain Injuries/complications , Intracranial Hypertension/diagnosis , Intracranial Hypertension/etiology , Monitoring, Physiologic , Bolivia , Humans , Intracranial Hypertension/therapy , Intracranial Pressure/physiology , Recovery of Function , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL