Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
2.
Phys Chem Chem Phys ; 23(21): 12494, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34014244

ABSTRACT

Correction for 'Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2' by Aditya G. Rao et al., Phys. Chem. Chem. Phys., 2021, DOI: 10.1039/d0cp05314g.

3.
Phys Chem Chem Phys ; 23(12): 7359-7367, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33876095

ABSTRACT

Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that bind a linear tetrapyrrole as a chromophore. They show photochromicity by having two stable states that can be interconverted by the photoisomerization of the chromophore. These photochemical properties make them an attractive target for biotechnological applications. However, their application is impeded by structural heterogeneity that reduces the yield of the photoconversion. The heterogeneity can originate either from the chromophore structure or the protein environment. Here, we study the origin of the heterogeneity in AnPixJg2, a representative member of the red/green cyanobacteriochrome family, that has a red absorbing parental state and a green absorbing photoproduct state. Using molecular dynamics simulations and umbrella sampling we have identified the protonation state of a conserved histidine residue as a trigger for structural heterogeneity. When the histidine is in a neutral form, the chromophore structure is homogenous, while in a positively charged form, the chromophore is heterogeneous with two different conformations. We have identified a correlation between the protonation of the histidine and the structural heterogeneity of the chromophore by detailed characterization of the interactions in the protein binding site. Our findings reconcile seemingly contradicting spectroscopic studies that attribute the heterogeneity to different sources. Furthermore, we predict that circular dichroism can be used as a diagnostic tool to distinguish different substates.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/chemistry , Histidine/metabolism , Bacterial Proteins/chemistry , Cyanobacteria/metabolism , Density Functional Theory , Histidine/chemistry , Models, Molecular , Molecular Structure , Protons
4.
J Chem Phys ; 153(6): 064101, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-35287464

ABSTRACT

We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the Cα-methylated α-residue Aib, homologated ß-residues (ß3) bearing proteinogenic side chains, and two cyclic ß residues (ßcyc; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms. Consistent with the AMBER IPolQ lineage of force fields, the charges were derived using the Implicitly Polarized Charge (IPolQ) scheme in the presence of explicit solvent. To our knowledge, no general force field reported to date models the combination of artificial building blocks examined here. In addition, we have derived Karplus coefficients for the calculation of backbone amide J-coupling constants for ß3Ala and ACPC ß residues. The AMBER ff15ipq-m force field reproduces experimentally observed J-coupling constants in simple tetrapeptides and maintains the expected conformational propensities in reported structures of proteins/peptides containing the artificial building blocks of interest-all on the µs timescale. These encouraging results demonstrate the power and robustness of the IPolQ lineage of force fields in modeling the structure and dynamics of natural proteins as well as mimetics with protein-inspired artificial backbones in atomic detail.

5.
J Chem Inf Model ; 58(10): 2043-2050, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30199633

ABSTRACT

We report progress in graphics processing unit (GPU)-accelerated molecular dynamics and free energy methods in Amber18. Of particular interest is the development of alchemical free energy algorithms, including free energy perturbation and thermodynamic integration methods with support for nonlinear soft-core potential and parameter interpolation transformation pathways. These methods can be used in conjunction with enhanced sampling techniques such as replica exchange, constant-pH molecular dynamics, and new 12-6-4 potentials for metal ions. Additional performance enhancements have been made that enable appreciable speed-up on GPUs relative to the previous software release.


Subject(s)
Molecular Dynamics Simulation , Software , Algorithms , Computer Graphics , Hydrogen-Ion Concentration , Thermodynamics
6.
J Comput Aided Mol Des ; 31(1): 47-60, 2017 01.
Article in English | MEDLINE | ID: mdl-27699553

ABSTRACT

We review our performance in the SAMPL5 challenge for predicting host-guest binding affinities using the movable type (MT) method. The challenge included three hosts, acyclic Cucurbit[2]uril and two octa-acids with and without methylation at the entrance to their binding cavities. Each host was associated with 6-10 guest molecules. The MT method extrapolates local energy landscapes around particular molecular states and estimates the free energy by Monte Carlo integration over these landscapes. Two blind submissions pairing MT with variants of the KECSA potential function yielded mean unsigned errors of 1.26 and 1.53 kcal/mol for the non-methylated octa-acid, 2.83 and 3.06 kcal/mol for the methylated octa-acid, and 2.77 and 3.36 kcal/mol for Cucurbit[2]uril host. While our results are in reasonable agreement with experiment, we focused on particular cases in which our estimates gave incorrect results, particularly with regard to association between the octa-acids and an adamantane derivative. Working on the hypothesis that differential solvation effects play a role in effecting computed binding affinities for the parent octa-acid and the methylated octa-acid and that the ligands bind inside the pockets (rather than on the surface) we devised a new solvent accessible surface area term to better quantify solvation energy contributions in MT based studies. To further explore this issue a, molecular dynamics potential of mean force (PMF) study indicates that, as found by our docking calculations, the stable binding mode for this ligand is inside (rather than surface bound) the octa-acid cavity whether the entrance is methylated or not. The PMF studies also obtained the correct order for the methylation-induced change in binding affinities and associated the difference, to a large extent to differential solvation effects. Overall, the SAMPL5 challenge yielded in improvements our solvation modeling and also demonstrated the need for thorough validation of input data integrity prior to any computational analysis.


Subject(s)
Ligands , Macrocyclic Compounds/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , Binding Sites , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Molecular Structure , Protein Binding , Solvents , Thermodynamics
7.
J Chem Phys ; 147(16): 161730, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29096508

ABSTRACT

The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α-helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α-helices in simulations of a ß-hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop other popular force fields, and may explain some of the need for manual corrections in this force fields' evolution. In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested, including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the differences.


Subject(s)
Oligopeptides/chemistry , Proteins/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Thermodynamics
8.
J Am Chem Soc ; 135(21): 7938-48, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23631449

ABSTRACT

Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in X-ray diffraction data. We present here 9.6 µs of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom RMSD; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom RMSD. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(-) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data as well as to validate computational chemistry methods.


Subject(s)
Peptides/chemistry , Crystallography, X-Ray , Molecular Dynamics Simulation
9.
Biochemistry ; 51(2): 597-607, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22145986

ABSTRACT

We report a point mutation in the second contact shell of the high-affinity streptavidin-biotin complex that appears to reduce binding affinity through transmitted effects on equilibrium dynamics. The Y54F streptavidin mutation causes a 75-fold loss of binding affinity with 73-fold faster dissociation, a large loss of binding enthalpy (ΔΔH = 3.4 kcal/mol at 37 °C), and a small gain in binding entropy (TΔΔS = 0.7 kcal/mol). The removed Y54 hydroxyl is replaced by a water molecule in the bound structure, but there are no observable changes in structure in the first contact shell and no additional changes surrounding the mutation. Molecular dynamics simulations reveal a large increase in the atomic fluctuation amplitudes for W79, a key biotin contact residue, compared to the fluctuation amplitudes in the wild-type. The increased W79 atomic fluctuation amplitudes are caused by loss of water-mediated hydrogen bonds between the Y54 hydroxyl group and peptide backbone atoms in and near W79. We propose that the increased atomic fluctuation amplitudes diminish the integrity of the W79-biotin interaction and represents a loosening of the "tryptophan collar" that is critical to the slow dissociation and high affinity of streptavidin-biotin binding. These results illustrate how changes in protein dynamics distal to the ligand binding pocket can have a profound impact on ligand binding, even when equilibrium structure is unperturbed.


Subject(s)
Biotin/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Point Mutation , Streptavidin/chemistry , Streptavidin/metabolism , Binding Sites , Crystallography, X-Ray , Kinetics , Molecular Dynamics Simulation , Mutant Proteins/genetics , Protein Binding , Protein Conformation , Streptavidin/genetics , Thermodynamics
10.
J Comput Aided Mol Des ; 26(5): 551-62, 2012 May.
Article in English | MEDLINE | ID: mdl-22198475

ABSTRACT

Hydration free energy calculations have become important tests of force fields. Alchemical free energy calculations based on molecular dynamics simulations provide a rigorous way to calculate these free energies for a particular force field, given sufficient sampling. Here, we report results of alchemical hydration free energy calculations for the set of small molecules comprising the 2011 Statistical Assessment of Modeling of Proteins and Ligands challenge. Our calculations are largely based on the Generalized Amber Force Field with several different charge models, and we achieved RMS errors in the 1.4-2.2 kcal/mol range depending on charge model, marginally higher than what we typically observed in previous studies (Mobley et al. in J Phys Chem B 111(9):2242-2254, 2007, J Chem Theory Comput 5(2):350-358, 2009, J Phys Chem B 115:1329-1332, 2011; Nicholls et al. in J Med Chem 51:769-779, 2008; Klimovich and Mobley in J Comput Aided Mol Design 24(4):307-316, 2010). The test set consists of ethane, biphenyl, and a dibenzyl dioxin, as well as a series of chlorinated derivatives of each. We found that, for this set, using high-quality partial charges from MP2/cc-PVTZ SCRF RESP fits provided marginally improved agreement with experiment over using AM1-BCC partial charges as we have more typically done, in keeping with our recent findings (Mobley et al. in J Phys Chem B 115:1329-1332, 2011). Switching to OPLS Lennard-Jones parameters with AM1-BCC charges also improves agreement with experiment. We also find a number of chemical trends within each molecular series which we can explain, but there are also some surprises, including some that are captured by the calculations and some that are not.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Proteins/chemistry , Thermodynamics , Entropy , Ligands , Quantum Theory , Water/chemistry
11.
Biochemistry ; 49(22): 4568-70, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20462252

ABSTRACT

We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.


Subject(s)
Biotin/chemistry , Electrons , Molecular Dynamics Simulation , Point Mutation , Streptavidin/chemistry , Streptavidin/metabolism , Binding Sites/genetics , Biotin/antagonists & inhibitors , Biotin/metabolism , Hydrogen Bonding , Leucine/chemistry , Leucine/genetics , Leucine/metabolism , Ligands , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Protein Binding/genetics , Protein Stability , Streptavidin/antagonists & inhibitors , Streptavidin/genetics , Thermodynamics
12.
J Phys Chem B ; 113(19): 6971-85, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19374419

ABSTRACT

We present a 250 ns simulation of the wild-type, biotin-liganded streptavidin tetramer in the solution phase and compare the trajectory to two previously published simulations of the protein in its crystal lattice. By performing both types of simulations, we are able to interpret the protein's behavior in solution in the context of its X-ray structure. We find that the rate of conformational sampling is increased in solution over the lattice environment, although the relevant conformational space in solution is also much larger, as indicated by overall fluctuations in the positions of backbone atoms. We also compare the distributions of chi1 angles sampled by side chains exposed to solvent in the lattice and in the solution phase, obtaining overall good agreement between the distributions obtained in our most rigorous lattice simulation and the crystallographic chi1 angles. We observe changes in the chi1 distributions in the solution phase, and note an apparent progression of the distributions as the environment changes from a tightly packed lattice filled with crystallization media to a bath of pure water. Finally, we examine the interaction of biotin and streptavidin in each simulation, uncovering a possible alternate conformation of the biotin carboxylate tail. We also note that a hydrogen bond observed to break transiently in previous solution-phase simulations is predominantly broken in this much longer solution-phase trajectory; in the lattice simulations, the lattice environment appears to help maintain the hydrogen bond, but more sampling will be needed to confirm whether the simulation model truly gives good agreement with the X-ray data in the lattice simulations. We expect that pairing solution-phase biomolecular simulations with crystal lattice simulations will help to validate simulation models and improve the interpretation of experimentally determined structures.


Subject(s)
Biotin/chemistry , Biotin/metabolism , Models, Molecular , Streptavidin/chemistry , Streptavidin/metabolism , Crystallography, X-Ray , Phase Transition , Protein Multimerization , Protein Stability , Protein Structure, Quaternary , Solutions , Time Factors
13.
Article in English | MEDLINE | ID: mdl-31662799

ABSTRACT

The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.

14.
J Chem Theory Comput ; 15(8): 4699-4707, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31314523

ABSTRACT

We present a fast implementation of the nudged elastic band (NEB) method into the particle mesh Ewald molecular dynamics module of the Amber software package for both central processing units (CPU) and graphics processing units (GPU). The accuracy of the new implementation has been validated for three cases: a conformational change of alanine dipeptide, the α-helix to ß-sheet transition in polyalanine, and a large conformational transition in the human 8-oxoguanine-DNA glycosylase with DNA complex (OGG1-DNA). Timing benchmark tests were performed on the explicitly solvated OGG1-DNA system containing ∼50 000 atoms. The GPU-optimized implementation of NEB achieves a more than two orders of magnitude speedup compared with the previous CPU implementation performed with a two-core CPU processor. The speed and scalable features of this implementation will enable NEB applications on larger and more complex systems.


Subject(s)
DNA Glycosylases/chemistry , Dipeptides/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Computer Graphics , DNA/chemistry , Humans , Protein Conformation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Software , Time Factors
15.
Biochemistry ; 47(46): 12065-77, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-18950193

ABSTRACT

A 250 ns molecular dynamics simulation of the biotin-liganded streptavidin crystal lattice, including cryoprotectant molecules and crystallization salts, is compared to a 250 ns simulation of the lattice solvated with pure water. The simulation using detailed crystallization conditions preserves the initial X-ray structure better than the simulation using pure water, even though the protein molecules display comparable mobility in either simulation. Atomic fluctuations computed from the simulation with crystallization conditions closely reproduce fluctuations derived from experimental temperature factors (correlation coefficient of 0.88, omitting two N-terminal residues with very high experimental B-factors). In contrast, fluctuations calculated from the simulation with pure water were less accurate, particularly for two of the streptavidin loops exposed to solvent in the crystal lattice. Finally, we obtain good agreement between the water and cryoprotectant densities obtained from the simulated crystallization conditions and the electron density due to solvent molecules in the X-ray structure. Our results suggest that detailed lattice simulations with realistic crystallization conditions can be used to assess potential function parameters, validate simulation protocols, and obtain valuable insights that solution-phase simulations do not easily provide. We anticipate that this will prove to be a powerful strategy for molecular dynamics simulations of biomolecules.


Subject(s)
Biotin/chemistry , Models, Molecular , Streptavidin/chemistry , Crystallography, X-Ray , Protein Structure, Tertiary/physiology
16.
Protein Sci ; 15(7): 1579-96, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16815913

ABSTRACT

We present the Coordinate Internal Representation of Solvation Energy (CIRSE) for computing the solvation energy of protein configurations in terms of pairwise interactions between their atoms with analytic derivatives. Currently, CIRSE is trained to a Poisson/surface-area benchmark, but CIRSE is not meant to fit this benchmark exclusively. CIRSE predicts the overall solvation energy of protein structures from 331 NMR ensembles with 0.951+/-0.047 correlation and predicts relative solvation energy changes between members of individual ensembles with an accuracy of 15.8+/-9.6 kcal/mol. The energy of individual atoms in any of CIRSE's 17 types is predicted with at least 0.98 correlation. We apply the model in energy minimization, rotamer optimization, protein design, and protein docking applications. The CIRSE model shows some propensity to accumulate errors in energy minimization as well as rotamer optimization, but these errors are consistent enough that CIRSE correctly identifies the relative solvation energies of designed sequences as well as putative docked complexes. We analyze the errors accumulated by the CIRSE model during each type of simulation and suggest means of improving the model to be generally useful for all-atom simulations.


Subject(s)
Models, Molecular , Proteins/chemistry , Solvents/chemistry , Protein Binding , Protein Conformation , Solubility , Thermodynamics
17.
Protein Sci ; 15(9): 2029-39, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16943441

ABSTRACT

Prediction of side-chain conformations is an important component of several biological modeling applications. In this work, we have developed and tested an advanced Monte Carlo sampling strategy for predicting side-chain conformations. Our method is based on a cooperative rearrangement of atoms that belong to a group of neighboring side-chains. This rearrangement is accomplished by deleting groups of atoms from the side-chains in a particular region, and regrowing them with the generation of trial positions that depends on both a rotamer library and a molecular mechanics potential function. This method allows us to incorporate flexibility about the rotamers in the library and explore phase space in a continuous fashion about the primary rotamers. We have tested our algorithm on a set of 76 proteins using the all-atom AMBER99 force field and electrostatics that are governed by a distance-dependent dielectric function. When the tolerance for correct prediction of the dihedral angles is a <20 degrees deviation from the native state, our prediction accuracies for chi1 are 83.3% and for chi1 and chi2 are 65.4%. The accuracies of our predictions are comparable to the best results in the literature that often used Hamiltonians that have been specifically optimized for side-chain packing. We believe that the continuous exploration of phase space enables our method to overcome limitations inherent with using discrete rotamers as trials.


Subject(s)
Computer Simulation , Models, Molecular , Protein Conformation , Bias , Databases, Factual , Monte Carlo Method , Predictive Value of Tests , Reproducibility of Results
18.
J Chem Theory Comput ; 12(8): 3926-47, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27399642

ABSTRACT

We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides-all on the microsecond (µs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution.

19.
J Chem Theory Comput ; 12(1): 281-96, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26584231

ABSTRACT

The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.


Subject(s)
Algorithms , Proteins/chemistry , Small Molecule Libraries/chemistry , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/metabolism , Ligands , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Structure, Secondary , Proteins/metabolism , Quantum Theory , Small Molecule Libraries/metabolism , Thermodynamics
20.
J Chem Theory Comput ; 10(10): 4515-4534, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25328495

ABSTRACT

We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard-Jones combining rules. The force field gives strong performance on α-helical and ß-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields.

SELECTION OF CITATIONS
SEARCH DETAIL