Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(23): 12576-12583, 2020 06 09.
Article in English | MEDLINE | ID: mdl-31767762

ABSTRACT

Technoeconomic and life-cycle analyses are presented for catalytic conversion of ethanol to fungible hydrocarbon fuel blendstocks, informed by advances in catalyst and process development. Whereas prior work toward this end focused on 3-step processes featuring dehydration, oligomerization, and hydrogenation, the consolidated alcohol dehydration and oligomerization (CADO) approach described here results in 1-step conversion of wet ethanol vapor (40 wt% in water) to hydrocarbons and water over a metal-modified zeolite catalyst. A development project increased liquid hydrocarbon yields from 36% of theoretical to >80%, reduced catalyst cost by an order of magnitude, scaled up the process by 300-fold, and reduced projected costs of ethanol conversion 12-fold. Current CADO products conform most closely to gasoline blendstocks, but can be blended with jet fuel at low levels today, and could potentially be blended at higher levels in the future. Operating plus annualized capital costs for conversion of wet ethanol to fungible blendstocks are estimated at $2.00/GJ for CADO today and $1.44/GJ in the future, similar to the unit energy cost of producing anhydrous ethanol from wet ethanol ($1.46/GJ). Including the cost of ethanol from either corn or future cellulosic biomass but not production incentives, projected minimum selling prices for fungible blendstocks produced via CADO are competitive with conventional jet fuel when oil is $100 per barrel but not at $60 per barrel. However, with existing production incentives, the projected minimum blendstock selling price is competitive with oil at $60 per barrel. Life-cycle greenhouse gas emission reductions for CADO-derived hydrocarbon blendstocks closely follow those for the ethanol feedstock.

2.
Biotechnol Biofuels ; 10: 50, 2017.
Article in English | MEDLINE | ID: mdl-28293288

ABSTRACT

BACKGROUND: Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). RESULTS: Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. CONCLUSIONS: This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.

SELECTION OF CITATIONS
SEARCH DETAIL