Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201269

ABSTRACT

The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.


Subject(s)
Brain , Gangliosides , Glutamic Acid , Static Electricity , Synapses , Gangliosides/metabolism , Gangliosides/chemistry , Humans , Synapses/metabolism , Animals , Brain/metabolism , Glutamic Acid/metabolism , Neurotransmitter Agents/metabolism , Neurons/metabolism , Synaptic Transmission
2.
Int J Mol Sci ; 25(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39337677

ABSTRACT

Serotonin is distinct among synaptic neurotransmitters because it is amphipathic and released from synaptic vesicles at concentrations superior to its water solubility limit (270 mM in synaptic vesicles for a solubility limit of 110 mM). Hence, serotonin is mostly aggregated in the synaptic cleft, due to extensive aromatic stacking. This important characteristic has received scant attention, as most representations of the serotonergic synapse take as warranted that serotonin molecules are present as monomers after synaptic vesicle exocytosis. Using a combination of in silico and physicochemical approaches and a new experimental device mimicking synaptic conditions, we show that serotonin aggregates are efficiently dissolved by gangliosides (especially GM1) present in postsynaptic membranes. This initial interaction, driven by electrostatic forces, attracts serotonin from insoluble aggregates and resolves micelles into monomers. Serotonin also interacts with cholesterol via a set of CH-π and van der Waals interactions. Thus, gangliosides and cholesterol act together as a functional serotonin-collecting funnel on brain cell membranes. Based on this unique mode of interaction with postsynaptic membranes, we propose a new model of serotonergic transmission that takes into account the post-exocytosis solubilizing effect of gangliosides and cholesterol on serotonin aggregates.


Subject(s)
Cholesterol , Gangliosides , Serotonin , Serotonin/metabolism , Cholesterol/metabolism , Cholesterol/chemistry , Gangliosides/metabolism , Gangliosides/chemistry , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Animals , Synaptic Vesicles/metabolism
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768244

ABSTRACT

Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.


Subject(s)
COVID-19 , HIV Infections , Humans , SARS-CoV-2 , COVID-19/metabolism , Retrospective Studies , Viral Proteins/metabolism , Receptors, Cell Surface/metabolism , Antigens, Viral/metabolism , HIV Infections/metabolism , Membrane Microdomains/metabolism , Glycoproteins/metabolism
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675271

ABSTRACT

A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's ß-amyloid peptide (Aß1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aß1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aß1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aß1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Gangliosides/metabolism , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Membrane Microdomains/metabolism
5.
J Med Virol ; 94(5): 2019-2025, 2022 05.
Article in English | MEDLINE | ID: mdl-34997962

ABSTRACT

The recently emerging SARS-CoV-2 variant omicron displays an unusual association of 30 mutations, 3 deletions, and 1 insertion. To analyze the impact of this atypic mutational landscape, we constructed a complete structure of the omicron spike protein. Compared with the delta variant, the receptor-binding domain (RBD) of omicron has an increased electrostatic surface potential, but a decreased affinity for the ACE-2 receptor. The N-terminal domain (NTD) has both a decreased surface potential and a lower affinity for lipid rafts. The omicron variant is predicted to be less fusogenic and thus less pathogenic than delta, due to a geometric reorganization of the S1-S2 cleavage site. Overall, these virological parameters suggest that omicron does not have a significant infectivity advantage over the delta variant. However, in omicron, neutralizing epitopes are greatly affected, suggesting that current vaccines will probably confer little protection against this variant. In conclusion, the puzzling mutational pattern of the omicron variant combines contradictory properties which may either decrease (virological properties) or increase (immunological escape/facilitation) the transmission of this variant in the human population. This Janus-like phenotype may explain some conflicting reports on the initial assessment of omicron and provide new insights about the molecular mechanisms controlling its dissemination and pathogenesis worldwide.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Protein Binding , SARS-CoV-2/genetics
6.
Glycoconj J ; 39(1): 1-11, 2022 02.
Article in English | MEDLINE | ID: mdl-34328594

ABSTRACT

Parkinson's disease (PD) is a major neurodegenerative disorder which exhibits many of the characteristics of a pandemic. Current therapeutic strategies are centered on the dopaminergic system, with limited efficacy, so that a treatment that has a direct impact on the underlying disease pathogenesis is urgently needed. Although α-synuclein is a privileged target for such therapies, this protein has been in the past wrongly considered as exclusively intracellular, so that the impact of paracrine neurotoxicity mechanisms in PD have been largely ignored. In this article we review the data showing that lipid rafts act as plasma membrane machineries for the formation of α-synuclein pore-like oligomers which trigger an increase of intracellular Ca2+. This Ca2+ influx is responsible for a self-sustained cascade of neurotoxic events, including mitochondrial oxidative stress, tau phosphorylation, Ca2+ release from the endoplasmic reticulum, Lewy body formation, and extracellular release of α-synuclein in exosomes. The first step of this cascade is the binding of α-synuclein to lipid raft gangliosides, suggesting that PD should be considered as both a proteinopathy and a ganglioside membrane disorder lipidopathy. Accordingly, blocking α-synuclein-ganglioside interactions should annihilate the whole neurotoxic cascade and stop disease progression. A pipeline of anti-oligomer molecules is under development, among which an in-silico designed synthetic peptide AmyP53 which is the first drug targeting gangliosides and thus able to prevent the formation of α-synuclein oligomers and all downstream neurotoxicity. These new therapeutic avenues challenge the current symptomatic approaches by finally targeting the root cause of PD through a long-awaited paradigm shift.


Subject(s)
Parkinson Disease , alpha-Synuclein , Disease Progression , Gangliosides/metabolism , Humans , Membrane Microdomains/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
7.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362170

ABSTRACT

Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer's and Parkinson's diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aß (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood-brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood-brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer's and Parkinson's diseases in future clinical trials in humans.


Subject(s)
Alzheimer Disease , Parkinson Disease , Animals , Humans , Rats , Parkinson Disease/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Rats, Inbred Lew , alpha-Synuclein/metabolism , Amyloid/metabolism , Brain/metabolism , Amyloidogenic Proteins/metabolism
8.
Molecules ; 27(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744971

ABSTRACT

We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/genetics , COVID-19/genetics , Epitopes/genetics , Humans , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Biochem Biophys Res Commun ; 538: 132-136, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33097184

ABSTRACT

Covid-19 is an infectious respiratory disease due to a coronavirus named SARS-CoV-2. A critical step of the infection cycle is the binding of the virus spike S protein to the cellular ACE-2 receptor. This interaction involves a receptor binding domain (RBD) located at the center of the S trimer, whereas the lateral N-terminal domain (NTD) displays a flat ganglioside binding site that enables the virus to bind to lipid rafts of the plasma membrane, where the ACE-2 receptor resides. S protein binding to lipid rafts can be blocked by hydroxychloroquine, which binds to gangliosides, and by azithromycin, which binds to the NTD. Based on these data, we identified the NTD of SARS-CoV-2 as a promising target for both therapeutic and vaccine strategies, a notion later supported by the discovery, in convalescent Covid-19 patients, of a neutralizing antibody (4A8) that selectively binds to the NTD. The 4A8 epitope overlaps the ganglioside binding domain, denying any access of the virus to lipid rafts when the antibody is bound to the S protein. Thus, our data explain why antibody binding to the tip of the NTD results in SARS-CoV-2 neutralization. The high level of conservation of the ganglioside binding domain of SARS-CoV-2 (100% identity in 584 of 600 isolates analyzed worldwide) offers unique opportunities for innovative vaccine/therapeutic strategies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/chemistry , COVID-19/therapy , Gangliosides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Azithromycin/chemistry , Azithromycin/pharmacology , Azithromycin/therapeutic use , Binding Sites , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Gangliosides/chemistry , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Protein Domains , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
10.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768981

ABSTRACT

We present here a gene therapy approach aimed at preventing the formation of Ca2+-permeable amyloid pore oligomers that are considered as the most neurotoxic structures in both Alzheimer's and Parkinson's diseases. Our study is based on the design of a small peptide inhibitor (AmyP53) that combines the ganglioside recognition properties of the ß-amyloid peptide (Aß, Alzheimer) and α-synuclein (α-syn, Parkinson). As gangliosides mediate the initial binding step of these amyloid proteins to lipid rafts of the brain cell membranes, AmyP53 blocks, at the earliest step, the Ca2+ cascade that leads to neurodegeneration. Using a lentivirus vector, we genetically modified brain cells to express the therapeutic coding sequence of AmyP53 in a secreted form, rendering these cells totally resistant to oligomer formation by either Aß or α-syn. This protection was specific, as control mCherry-transfected cells remained fully sensitive to these oligomers. AmyP53 was secreted at therapeutic concentrations in the supernatant of cultured cells, so that the therapy was effective for both transfected cells and their neighbors. This study is the first to demonstrate that a unique gene therapy approach aimed at preventing the formation of neurotoxic oligomers by targeting brain gangliosides may be considered for the treatment of two major neurodegenerative disorders, Alzheimer's and Parkinson's diseases.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Peptide Fragments/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Brain/drug effects , Brain/metabolism , Calcium/metabolism , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Gangliosides/metabolism , Genetic Therapy/methods , Humans
11.
Biochim Biophys Acta ; 1862(2): 213-22, 2016 02.
Article in English | MEDLINE | ID: mdl-26655601

ABSTRACT

Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's ß-amyloid (Aß1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aß/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aß1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aß1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aß1-42 on synaptic vesicle trafficking and decreased the Aß1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Brain/metabolism , Calcium/metabolism , Gangliosides/metabolism , Parkinson Disease/metabolism , Peptide Fragments/metabolism , alpha-Synuclein/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Cell Line , Humans , Parkinson Disease/pathology , Permeability , Rats, Wistar , Zinc/metabolism
12.
Biochemistry ; 53(28): 4489-502, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25000142

ABSTRACT

Brain cholesterol plays a critical role in Alzheimer's disease and other neurodegenerative diseases. The molecular mechanisms linking cholesterol to neurotoxicity have remained elusive for a long time, but recent data have allowed the identification of functional cholesterol-binding domains in several amyloidogenic proteins involved in neurodegenerative diseases, including Alzheimer's disease. In this review, we analyze the cholesterol binding properties of ß-amyloid (Aß) peptides and the impact of these interactions on amyloid pore formation. We show that although the cholesterol-binding domains of Aß peptides and of transmembrane precursor C99 are partially overlapping, they involve distinct amino acid residues, so that cholesterol has a greater affinity for Aß than for C99. Synthetic 22-35 and 25-35 fragments of Aß retained the ability of the full-length peptide 1-42 to bind cholesterol and to form zinc-sensitive, calcium-permeable amyloid pores in cultured neural cells. Studies with mutant peptides allowed the identification of key residues involved in cholesterol binding and channel formation. Cholesterol promoted the insertion of Aß in the plasma membrane, induced α-helical structuration, and forced the peptide to adopt a tilted topology that favored the oligomerization process. Bexarotene, an amphipathic drug currently considered as a potential candidate medication for the treatment of neurodegenerative diseases, competed with cholesterol for binding to Aß and prevented oligomeric channel formation. These studies indicate that it is possible to prevent the generation of neurotoxic oligomers by targeting the cholesterol-binding domain of Aß peptides. This original strategy could be used for the treatment of Alzheimer's and other neurodegenerative diseases that involve cholesterol-dependent toxic oligomers.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Protein Multimerization , Amyloid beta-Peptides/chemical synthesis , Amyloid beta-Peptides/chemistry , Cell Membrane/chemistry , Cholesterol/chemistry , Humans , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary
13.
J Neurochem ; 128(1): 186-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23919567

ABSTRACT

Alzheimer ß-amyloid (Aß) peptides can self-organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aß22-35 peptide, which encompasses the cholesterol-binding domain of Aß, induces a specific increase of Ca(2+) levels in neural cells. This effect is neither observed in calcium-free medium nor in cholesterol-depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aß22-35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical topology of Aß22-35. This facilitates the establishment of an inter-peptide hydrogen bond network involving Asn-27 and Lys-28, a key step in the octamerization of Aß22-35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease. Aß22-35 peptide, which encompasses the cholesterol binding domain of Aß, induces a specific increase of Ca(2+) level in neural cells. Double mutations V24G/K28G and N27R/K28R modify cholesterol binding and abrogate channels formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical peptide topology facilitating the formation of annular octameric channels, as schematically shown in the graphic (with a hydrogen bond shown in green for two vicinal peptides). Overall, the data give insights into the role of cholesterol in amyloid channel formation and open up new therapeutic options for Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Peptide Fragments/chemistry , Peptide Fragments/physiology , Amyloid beta-Peptides/physiology , Cell Line, Tumor , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
14.
Life (Basel) ; 14(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38541606

ABSTRACT

Defining life is an arduous task that has puzzled philosophers and scientists for centuries. Yet biology suffers from a lack of clear definition, putting biologists in a paradoxical situation where one can describe at the atomic level complex objects that remain globally poorly defined. One could assume that such descriptions make it possible to perfectly characterize living systems. However, many cases of misinterpretation put this assumption into perspective. In this article, we focus on critical parameters such as time, water, entropy, space, quantum properties, and electrostatic potential to redefine the nature of living matter, with special emphasis on biological coding. Where does the DNA double helix come from, why cannot the reproduction of living organisms occur without mutations, what are the limitations of the genetic code, and why do not all proteins have a stable three-dimensional structure? There are so many questions that cannot be resolved without considering the aforementioned parameters. Indeed, (i) time and space constrain many biological mechanisms and impose drastic solutions on living beings (enzymes, transporters); (ii) water controls the fidelity of DNA replication and the structure/disorder balance of proteins; (iii) entropy is the driving force of many enzymatic reactions and molecular interactions; (iv) quantum mechanisms explain why a molecule as simple as hydrocyanic acid (HCN) foreshadows the helical structure of DNA, how DNA is stabilized, why mutations occur, and how the Earth magnetic field can influence the migration of birds; (v) electrostatic potential controls epigenetic mechanisms, lipid raft functions, and virus infections. We consider that raising awareness of these basic parameters is critical for better understanding what life is, and how it handles order and chaos through a combination of genetic and epigenetic mechanisms. Thus, we propose to incorporate these parameters into the definition of life.

15.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: mdl-36851498

ABSTRACT

Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Static Electricity , Antiviral Agents , Gangliosides
16.
Viruses ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37766261

ABSTRACT

The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antiviral Agents , Gangliosides
17.
Front Biosci (Landmark Ed) ; 28(8): 157, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37664934

ABSTRACT

BACKGROUND: Plasmolipin (PLLP) is a membrane protein located in lipid rafts that participates in the formation of myelin. It is also implicated in many pathologies, such as neurological disorders, type 2 diabetes, and cancer metastasis. To better understand how PLLP interacts with raft components (gangliosides and cholesterol), we undertook a global study combining in silico simulations and physicochemical measurements of molecular interactions in various PLLP-ganglioside systems. METHODS: In silico studies consisted of molecular dynamics simulations in reconstructed membrane environments. PLLP-ganglioside interaction measurements were performed by microtensiometry at the water-air interface on ganglioside monolayers. RESULTS: We have elucidated the mode of interaction of PLLP with ganglioside GM1 and characterized this interaction at the molecular level. We showed that GM1 induces the structuring of the extracellular loops of PLLP and that this interaction propagates a conformational signal through the plasma membrane, involving a cholesterol molecule located between transmembrane domains. This conformational wave is finally transmitted to the intracellular domain of the protein, consistent with the role of PLLP in signal transduction. CONCLUSIONS: This study is a typical example of the epigenetic dimension of protein structure, a concept developed by our team to describe the chaperone effect of gangliosides on disordered protein motifs which associate with lipid rafts. From a physiological point of view, these data shed light on the role of gangliosides in myelin formation. From a pathological point of view, this study will help to design innovative therapeutic strategies focused on ganglioside-PLLP interactions in various PLLP-associated diseases.


Subject(s)
Myelin Sheath , Myelin and Lymphocyte-Associated Proteolipid Proteins , Humans , G(M1) Ganglioside , Gangliosides , Membrane Microdomains , Proteolipids , Myelin and Lymphocyte-Associated Proteolipid Proteins/chemistry
18.
Biomolecules ; 12(10)2022 10 20.
Article in English | MEDLINE | ID: mdl-36291736

ABSTRACT

One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore, multiple functions, depending on the ligands with which they interact. Under these conditions, one can wonder about the value of algorithms developed for predicting the structure of proteins, in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on this observation, we have proposed a paradigm, referred to as "Epigenetic Dimension of Protein Structure" (EDPS), which takes into account all environmental parameters that control the structure of a protein beyond the amino acid sequence (hence "epigenetic"). In this new study, we compare the reliability of the AlphaFold and Robetta algorithms' predictions for a new set of membrane proteins involved in human pathologies. We found that Robetta was generally more accurate than AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which control the structural dynamics of membrane protein structure through chaperone effects, were identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially AlphaFold, which warrants further development.


Subject(s)
Intrinsically Disordered Proteins , Humans , Protein Conformation , Intrinsically Disordered Proteins/chemistry , Proteome/metabolism , Reproducibility of Results , Membrane Proteins , Gangliosides , Lipids
19.
Viruses ; 14(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36423140

ABSTRACT

The recent outbreak of Monkeypox virus requires the development of a vaccine specifically directed against this virus as quickly as possible. We propose here a new strategy based on a two-step analysis combining (i) the search for binding domains of viral proteins to gangliosides present in lipid rafts of host cells, and (ii) B epitope predictions. Based on previous studies of HIV and SARS-CoV-2 proteins, we show that the Monkeypox virus cell surface-binding protein E8L possesses a ganglioside-binding motif consisting of several subsites forming a ring structure. The binding of the E8L protein to a cluster of gangliosides GM1 mimicking a lipid raft domain is driven by both shape and electrostatic surface potential complementarities. An induced-fit mechanism unmasks selected amino acid side chains of the motif without significantly affecting the secondary structure of the protein. The ganglioside-binding motif overlaps three potential linear B epitopes that are well exposed on the unbound E8L surface that faces the host cell membrane. This situation is ideal for generating neutralizing antibodies. We thus suggest using these three sequences derived from the E8L protein as immunogens in a vaccine formulation (recombinant protein, synthetic peptides or genetically based) specific for Monkeypox virus. This lipid raft/ganglioside-based strategy could be used for developing therapeutic and vaccine responses to future virus outbreaks, in parallel to existing solutions.


Subject(s)
Monkeypox virus , Viral Proteins , Epitopes/chemistry , Gangliosides , Mpox (monkeypox) , Monkeypox virus/chemistry , Viral Proteins/chemistry
20.
Adv Protein Chem Struct Biol ; 128: 289-324, 2022.
Article in English | MEDLINE | ID: mdl-35034721

ABSTRACT

Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's ß-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.


Subject(s)
COVID-19 , Amyloid beta-Peptides , Gangliosides , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL