Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046438

ABSTRACT

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Subject(s)
Estrous Cycle , Mice/physiology , Sexual Behavior, Animal , Smell , Vomeronasal Organ/physiology , Animals , Female , Male , Mice, Inbred C57BL , Neurons/physiology , Pheromones/metabolism , Progesterone/metabolism , Proteins/chemistry , Sex Characteristics , Vomeronasal Organ/cytology
2.
BMC Biol ; 21(1): 152, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37424020

ABSTRACT

BACKGROUND: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS: We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS: Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.


Subject(s)
Vomeronasal Organ , Mice , Animals , Vomeronasal Organ/physiology , Lipopolysaccharides , Brain , Sensory Receptor Cells , Inflammation
3.
Article in English | MEDLINE | ID: mdl-37690081

ABSTRACT

In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.

4.
Reprod Fertil Dev ; 35(4): 307-320, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36593258

ABSTRACT

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS: The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS: The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS: These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS: These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.


Subject(s)
Ovarian Cysts , Raptors , Female , Animals , Mice , Humans , TOR Serine-Threonine Kinases/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors/metabolism , RNA, Small Interfering , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Raptors/genetics , Raptors/metabolism , Mammals/genetics
5.
Proc Natl Acad Sci U S A ; 116(11): 5135-5143, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804203

ABSTRACT

Aggression is controlled by the olfactory system in many animal species. In male mice, territorial and infant-directed aggression are tightly regulated by the vomeronasal organ (VNO), but how diverse subsets of sensory neurons convey pheromonal information to limbic centers is not yet known. Here, we employ genetic strategies to show that mouse vomeronasal sensory neurons expressing the G protein subunit Gαi2 regulate male-male and infant-directed aggression through distinct circuit mechanisms. Conditional ablation of Gαi2 enhances male-male aggression and increases neural activity in the medial amygdala (MeA), bed nucleus of the stria terminalis, and lateral septum. By contrast, conditional Gαi2 ablation causes reduced infant-directed aggression and decreased activity in MeA neurons during male-infant interactions. Strikingly, these mice also display enhanced parental behavior and elevated neural activity in the medial preoptic area, whereas sexual behavior remains normal. These results identify Gαi2 as the primary G protein α-subunit mediating the detection of volatile chemosignals in the apical layer of the VNO, and they show that Gαi2+ VSNs and the brain circuits activated by these neurons play a central role in orchestrating and balancing territorial and infant-directed aggression of male mice through bidirectional activation and inhibition of different targets in the limbic system.


Subject(s)
Aggression , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Sensory Receptor Cells/metabolism , Territoriality , Vomeronasal Organ/metabolism , Animals , Animals, Newborn , Biomarkers/metabolism , Brain/physiology , Brain Mapping , Female , Gene Deletion , Male , Mice, Inbred C57BL , Mutation/genetics , Sexual Behavior, Animal
6.
Am J Respir Cell Mol Biol ; 65(4): 378-389, 2021 10.
Article in English | MEDLINE | ID: mdl-34102087

ABSTRACT

Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity-mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa-induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.


Subject(s)
Flagellin/pharmacology , Inflammation/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Animals , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Flagellin/immunology , Flagellin/metabolism , Immunity, Innate/drug effects , Lung/immunology , Lung/microbiology , Lung/pathology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction/drug effects , Swine
7.
Cell Physiol Biochem ; 52(6): 1361-1380, 2019.
Article in English | MEDLINE | ID: mdl-31075188

ABSTRACT

BACKGROUND/AIMS: Human Dental Pulp Stem Cells (hDPSCs) are one of the most promising types of cells to regenerate nerve tissues. Standard DMEM+10% fetal bovine serum (FBS) culture medium allows a fast expansion of hDPSC as a surface-adherent cell monolayer. However, the use of FBS also compromises the clinical use of these protocols, and its longterm presence favors hDPSCs differentiation toward mesenchymal cell-derived lineages, at the expense of a reduced capability to generate neural cells. The objective of this work was to characterize the role of neurotrophin signaling on hDPSCs using a serum-free culture protocol, and to assess the neurogenic and gliogenic capacity of hDPSCs for future nerve tissue bioengineering and regeneration. METHODS: We compared the different expression of neurotrophin receptors by RT-PCR, Q-PCR, and IF of hDPSCs cultured with different growth media in the presence or absence of serum. Moreover, we assessed the response of hDPSCs to stimulation of neurotransmitter receptors by live cell calcium imaging under these different media. Finally, we compared the osteogenic potential of hDPSCs by Alizarin red staining, and the differentiation to gliogenic/neurogenic fates by immunostaining for Schwann lineage and neuronal lineage markers. We tested a commercial serum-free medium designed for the growth of mesenchymal stem cells: StemPro MSCTM (STP). RESULTS: hDPSCs cultured in STP generated small non-adherent floating dentospheres that showed very low proliferation rates, in contrast to standard FBS-containing medium. We found that hDPSCs grown in STP conditions overexpressed neurotrophin receptor genes NTRK2 (TrkB) and NTRK3 (TrkC). Interestingly, the stimulation of these receptors by adding their respective ligands BDNF and NT-3 to STP medium enhanced the neural crest (NC) progenitor features of cultured hDPSCs. We observed a 10 to 100-fold increase of migratory NC cell markers HNK1 and P75NTR, and a significant overexpression of pluripotency core factors SOX2, OCT4 and NANOG. Moreover, hDPSCs cultured in BDNF/NT-3 supplemented STP showed a largely increased potential to differentiate towards neuronal and Schwann glial lineage cells, assessed by positive immunostaining for DCX, NeuN and S100ß, p75NTR markers, respectively. CONCLUSION: Our results demonstrate that the use of BDNF and NT-3 combined with STP induced the partial reprogramming of ectomesenchymal hDPSCs to generate early NC progenitor cells, which are far more competent for neuronal and glial differentiation than hDPSCs grown in the presence of FBS.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Cellular Reprogramming/drug effects , Culture Media, Serum-Free/pharmacology , Nerve Growth Factors/pharmacology , Adolescent , Adult , CD57 Antigens/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dental Pulp/cytology , Humans , Ion Channels/genetics , Ion Channels/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Neurogenesis/drug effects , Neurotrophin 3 , Receptor, trkA/genetics , Receptor, trkA/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Young Adult
9.
BMC Biol ; 13: 104, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26621367

ABSTRACT

BACKGROUND: The hormonal state during the estrus cycle or pregnancy produces alterations on female olfactory perception that are accompanied by specific maternal behaviors, but it is unclear how sex hormones act on the olfactory system to enable these sensory changes. RESULTS: Herein, we show that the production of neuronal progenitors is stimulated in the vomeronasal organ (VNO) epithelium of female mice during a late phase of pregnancy. Using a wide range of molecular markers that cover the whole VNO cell maturation process in combination with Ca(2+) imaging in early postmitotic neurons, we show that newly generated VNO cells adopt morphological and functional properties of mature sensory neurons. A fraction of these newly generated cells project their axons to the olfactory forebrain, extend dendrites that contact the VNO lumen, and can detect peptides and urinary proteins shown to contain pheromone activity. High-throughput RNA-sequencing reveals concomitant differences in gene expression in the VNO transcriptomes of pregnant females. These include relative increases in expression of 20 vomeronasal receptors, of which 17 belong to the V1R subfamily, and may therefore be considered as candidate receptors for mediating maternal behaviors. We identify the expression of several hormone receptors in the VNO of which estrogen receptor α (Esr1) is directly localized to neural progenitors. Administration of sustained high levels of estrogen, but not progesterone, is sufficient to stimulate vomeronasal progenitor cell proliferation in the VNO epithelium. CONCLUSIONS: Peripheral olfactory neurogenesis driven by estrogen may contribute to modulate sensory perception and adaptive VNO-dependent behaviors during pregnancy and early motherhood.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Neurogenesis , Vomeronasal Organ/physiology , Animals , Cell Proliferation , Female , Mice , Neural Stem Cells/physiology , Pregnancy , Vomeronasal Organ/growth & development
10.
J Neurosci ; 34(15): 5121-33, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24719092

ABSTRACT

The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility complex genes. The in vivo, physiological roles of the H2-Mv gene family remain mysterious more than a decade after the discovery of combinatorial H2-Mv gene expression in VSNs. Here, we have taken a genetic approach and have deleted the 530 kb cluster of H2-Mv genes in the mouse germline by chromosome engineering. Homozygous mutant mice (ΔH2Mv mice) are viable and fertile. There are no major anatomical defects in their VNO and accessory olfactory bulb (AOB). Their VSNs can be stimulated with chemostimuli (peptides and proteins) to the same maximum responses as VSNs of wild-type mice, but require much higher concentrations. This physiological phenotype is displayed at the single-cell level and is cell autonomous: single V2rf2-expressing VSNs, which normally coexpress H2-Mv genes, display a decreased sensitivity to a peptide ligand in ΔH2Mv mice, whereas single V2r1b-expressing VSNs, which do not coexpress H2-Mv genes, show normal sensitivity to a peptide ligand in ΔH2Mv mice. Consistent with the greatly decreased VSN sensitivity, ΔH2Mv mice display pronounced deficits in aggressive and sexual behaviors. Thus, H2-Mv genes are not absolutely essential for the generation of physiological responses, but are required for ultrasensitive chemodetection by a subset of VSNs.


Subject(s)
Chemoreceptor Cells/metabolism , Genes, MHC Class I/genetics , Smell/genetics , Vomeronasal Organ/metabolism , Animals , Calcium/metabolism , Cell Line , Chemoreceptor Cells/physiology , Female , Gene Deletion , Germ-Line Mutation , Homozygote , Male , Mice , Mice, Inbred C57BL , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sensory Thresholds , Sexual Behavior, Animal , Vomeronasal Organ/cytology , Vomeronasal Organ/physiology
11.
BMC Biol ; 12: 31, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24886577

ABSTRACT

BACKGROUND: Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS: To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS: These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.


Subject(s)
GTP-Binding Proteins/metabolism , Pheromones/pharmacology , Reproduction/drug effects , Sexual Behavior, Animal/drug effects , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Choice Behavior/drug effects , Estrous Cycle/drug effects , Female , Gene Deletion , Genes, Reporter , Gonadal Steroid Hormones/metabolism , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Ovary/pathology , Posture , Sexual Maturation/drug effects , Smell/drug effects
12.
Proc Natl Acad Sci U S A ; 108(31): 12898-903, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768373

ABSTRACT

The rodent vomeronasal organ (VNO) mediates the regulation of species-specific and interspecies social behaviors. We have used gene targeting to examine the role of the G protein Gαo, encoded by the gene Gnao1, in vomeronasal function. We used the Cre-loxP system to delete Gαo in those cells that express olfactory marker protein, which includes all vomeronasal sensory neurons of the basal layer of the VNO sensory epithelium. Using electrophysiology and calcium imaging, we show that the conditional null mice exhibit strikingly reduced sensory responses in V2R receptor-expressing vomeronasal sensory neurons to specific molecular cues, including MHC1 antigens, major urinary proteins, and exocrine gland-secreting peptide. Gαo is also vital for vomeronasal sensing of two N-formylated mitochondrially encoded peptides derived from NADH dehydrogenase 1. Furthermore, we show that Gαo is an essential requirement for the display of male-male territorial aggression as well as maternal aggression in mice. Finally, we show that Gαo-dependent maternal aggression can be induced by major urinary proteins. These cellular and behavioral phenotypes identify Gαo as the primary G-protein α-subunit mediating the detection of peptide and protein pheromones by sensory neurons of the VNO.


Subject(s)
Aggression/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Sensory Receptor Cells/physiology , Vomeronasal Organ/physiology , Analysis of Variance , Animals , Animals, Newborn , Calcium/metabolism , Female , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression , Habituation, Psychophysiologic/physiology , Immunohistochemistry , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Odorants , Olfactory Marker Protein/genetics , Olfactory Marker Protein/metabolism , Pregnancy , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sensory Receptor Cells/metabolism , Vomeronasal Organ/metabolism
13.
Neurosci Biobehav Rev ; 161: 105686, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657845

ABSTRACT

Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Smell , Animals , Autism Spectrum Disorder/physiopathology , Mice , Smell/physiology , Humans , Parenting/psychology , Social Behavior , Olfactory Pathways/physiopathology
14.
Physiol Behav ; 275: 114451, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38176291

ABSTRACT

Early exposure of does to sexually active bucks triggers early puberty onset correlating with neuroendocrine changes. However, the sensory pathways that are stimulated by the male are still unknown. Here, we assessed whether responses to olfactory stimuli are modulated by social experience (exposure to males or not) and/or endocrine status (prepubescent or pubescent). We used a calcium imaging approach on goat sensory cells from the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). For both cell types, we observed robust responses to active male hair in females under three physiological conditions: prepubescent females isolated from males (ISOL PrePub), pubescent females exposed to males (INT Pub) and isolated females (ISOL Pub). Response analysis showed overall greater proportion of responses to buck hair in ISOL PrePub. We hypothesized that females would be more responsive to active buck hair during the prepubertal period, with numerous responses perhaps originating from immature neurons. We also observed a greater proportion of mature olfactory neurons in the MOE and VNO of INT Pub females suggesting that male exposure can induce plastic changes on olfactory cell function and organization. To determine whether stimulation by male odor can advance puberty, we exposed prepubescent does to active buck hair (ODOR). In both ODOR and females isolated from males (ISOL) groups, puberty was reached one month after females exposed to intact bucks (INT), suggesting that olfactory stimulation is not sufficient to trigger puberty.


Subject(s)
Ovulation , Sexual Behavior, Animal , Animals , Female , Male , Sexual Behavior, Animal/physiology , Seasons , Ovulation/physiology , Smell , Goats/physiology
15.
Nature ; 450(7171): 899-902, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18064011

ABSTRACT

Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.


Subject(s)
Aggression/drug effects , Pheromones/analysis , Pheromones/pharmacology , Proteins/analysis , Proteins/pharmacology , Aggression/physiology , Animals , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Lipocalins/analysis , Lipocalins/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Orchiectomy , Pheromones/metabolism , Proteins/metabolism , Receptors, Pheromone/metabolism , TRPC Cation Channels/deficiency , TRPC Cation Channels/genetics , Urine/chemistry , Vomeronasal Organ/cytology , Vomeronasal Organ/drug effects , Vomeronasal Organ/metabolism
16.
Mol Neurobiol ; 60(8): 4641-4658, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37129797

ABSTRACT

Normal aging and many age-related disorders such as Alzheimer's disease cause deficits in olfaction; however, it is currently unknown how natural and pathological aging impacts the detection of social odors which might contribute to the impoverishment of social behavior at old age further worsening overall health. Analysis of the vomeronasal organ, the main gateway to pheromone-encoded information, indicated that natural and pathological aging distinctively affects the neurogenic ability of the vomeronasal sensory epithelium. Whereas cell proliferation remained majorly preserved in 1-year-old APP/PS1 mice, naturally aged animals exhibited significant deficiencies in the number of mature, proliferative, and progenitor cells. These alterations may support age-related deficits in the recognition of social cues and the display of social behavior. Our findings indicate that aging disrupts the processing of social olfactory cues decreasing social odor exploration, discrimination, and habituation in both wild-type senescent (2-year-old) mice and in 1-year-old double mutant model of Alzheimer's disease (APP/PS1). Furthermore, social novelty was diminished in 1-year-old APP/PS1 mice, indicating that alterations in the processing of social cues are accelerated during pathological aging. This study reveals fundamental differences in the cellular processes by which natural and pathological aging disrupts the exploration of social information and social behavior.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Pheromones , Social Behavior , Smell , Aging/pathology , Mice, Transgenic , Amyloid beta-Protein Precursor , Disease Models, Animal
17.
J Neuroendocrinol ; 35(5): e13284, 2023 05.
Article in English | MEDLINE | ID: mdl-37157154

ABSTRACT

In goats, early exposure of spring-born females to sexually active bucks induces an early puberty onset assessed by the first ovulation. This effect is found when females are continuously exposed well before the male breeding season starting in September. The first aim of this study was to evaluate whether a shortened exposure of females to males could also lead to early puberty. We assessed the onset of puberty in Alpine does isolated from bucks (ISOL), exposed to wethers (CAS), exposed to intact bucks from the end of June (INT1), or mid-August (INT2). Intact bucks became sexually active in mid-September. At the beginning of October, 100% of INT1 and 90% of INT2 exposed does ovulated, in contrast to the ISOL (0%) and CAS (20%) groups. This demonstrated that contact with males that become sexually active is the main factor prompting precocious puberty in females. Furthermore, a reduced male exposure during a short window before the breeding season is sufficient to induce this phenomenon. The second aim was to investigate the neuroendocrine changes induced by male exposure. We found a significant increase in kisspeptin immunoreactivity (fiber density and number of cell bodies) in the caudal part of the arcuate nucleus of INT1 and INT2 exposed females. Thus, our results suggest that sensory stimuli from sexually active bucks (e.g., chemosignals) may trigger an early maturation of the ARC kisspeptin neuronal network leading to gonadotropin-releasing hormone secretion and first ovulation.


Subject(s)
Arcuate Nucleus of Hypothalamus , Kisspeptins , Male , Female , Animals , Sexual Maturation , Gonadotropin-Releasing Hormone , Goats , Neurons
18.
Proc Natl Acad Sci U S A ; 106(11): 4507-12, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19240213

ABSTRACT

Neuregulin-1 (NRG1) and its ErbB2/B4 receptors are encoded by candidate susceptibility genes for schizophrenia, yet the essential functions of NRG1 signaling in the CNS are still unclear. Using CRE/LOX technology, we have inactivated ErbB2/B4-mediated NRG1 signaling specifically in the CNS. In contrast to expectations, cell layers in the cerebral cortex, hippocampus, and cerebellum develop normally in the mutant mice. Instead, loss of ErbB2/B4 impairs dendritic spine maturation and perturbs interactions of postsynaptic scaffold proteins with glutamate receptors. Conversely, increased NRG1 levels promote spine maturation. ErbB2/B4-deficient mice show increased aggression and reduced prepulse inhibition. Treatment with the antipsychotic drug clozapine reverses the behavioral and spine defects. We conclude that ErbB2/B4-mediated NRG1 signaling modulates dendritic spine maturation, and that defects at glutamatergic synapses likely contribute to the behavioral abnormalities in ErbB2/B4-deficient mice.


Subject(s)
Cerebral Cortex/cytology , Dendritic Spines/pathology , Nerve Tissue Proteins/physiology , Receptor, ErbB-2/physiology , Signal Transduction , Adaptor Proteins, Signal Transducing , Animals , Antipsychotic Agents/pharmacology , Central Nervous System , Clozapine/pharmacology , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Neuregulin-1 , Oncogene Proteins v-erbB/deficiency , Oncogene Proteins v-erbB/physiology , Receptors, Glutamate
19.
Front Cell Neurosci ; 15: 638800, 2021.
Article in English | MEDLINE | ID: mdl-33679330

ABSTRACT

In mice, social behaviors are largely controlled by the olfactory system. Pheromone detection induces naïve virgin females to retrieve isolated pups to the nest and to be sexually receptive to males, but social experience increases the performance of both types of innate behaviors. Whether animals are intrinsically sensitive to the smell of conspecifics, or the detection of olfactory cues modulates experience for the display of social responses is currently unclear. Here, we employed mice with an olfactory-specific deletion of the G protein Gαi2, which partially eliminates sensory function in the vomeronasal organ (VNO), to show that social behavior in female mice results from interactions between intrinsic mechanisms in the vomeronasal system and experience-dependent plasticity. In pup- and sexually-naïve females, Gαi2 deletion elicited a reduction in pup retrieval behavior, but not in sexual receptivity. By contrast, experienced animals showed normal maternal behavior, but the experience-dependent increase in sexual receptivity was incomplete. Further, lower receptivity was accompanied by reduced neuronal activity in the anterior accessory olfactory bulb and the rostral periventricular area of the third ventricle. Therefore, neural mechanisms utilize intrinsic sensitivity in the mouse vomeronasal system and enable plasticity to display consistent social behavior.

20.
Sci Rep ; 10(1): 894, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31965032

ABSTRACT

Pheromone detection by the vomeronasal organ (VNO) mediates important social behaviors across different species, including aggression and sexual behavior. However, the relationship between vomeronasal function and social hierarchy has not been analyzed reliably. We evaluated the role of pheromone detection by receptors expressed in the apical layer of the VNO such as vomeronasal type 1 receptors (V1R) in dominance behavior by using a conditional knockout mouse for G protein subunit Gαi2, which is essential for V1R signaling. We used the tube test as a model to analyze the within-a-cage hierarchy in male mice, but also as a paradigm of novel territorial competition in animals from different cages. In absence of prior social experience, Gαi2 deletion promotes winning a novel social competition with an unfamiliar control mouse but had no effect on an established hierarchy in cages with mixed genotypes, both Gαi2-/- and controls. To further dissect social behavior of Gαi2-/- mice, we performed a 3-chamber sociability assay and found that mutants had a slightly altered social investigation. Finally, gene expression analysis in the medial prefrontal cortex (mPFC) for a subset of genes previously linked to social status revealed no differences between group-housed Gαi2-/- and controls. Our results reveal a direct influence of pheromone detection on territorial dominance, indicating that olfactory communication involving apical VNO receptors like V1R is important for the outcome of an initial social competition between two unfamiliar male mice, whereas final social status acquired within a cage remains unaffected. These results support the idea that previous social context is relevant for the development of social hierarchy of a group. Overall, our data identify two context-dependent forms of dominance, acute and chronic, and that pheromone signaling through V1R receptors is involved in the first stages of a social competition but in the long term is not predictive for high social ranks on a hierarchy.


Subject(s)
Competitive Behavior/physiology , GTP-Binding Protein alpha Subunit, Gi2/genetics , Prefrontal Cortex/physiology , Vomeronasal Organ/cytology , Animals , Behavior, Animal , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Pheromones , Social Dominance , Vomeronasal Organ/physiology
SELECTION OF CITATIONS
SEARCH DETAIL