Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Immunol ; 212(4): 505-512, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38315950

ABSTRACT

As COVID-19 continues, an increasing number of patients develop long COVID symptoms varying in severity that last for weeks, months, or longer. Symptoms commonly include lingering loss of smell and taste, hearing loss, extreme fatigue, and "brain fog." Still, persistent cardiovascular and respiratory problems, muscle weakness, and neurologic issues have also been documented. A major problem is the lack of clear guidelines for diagnosing long COVID. Although some studies suggest that long COVID is due to prolonged inflammation after SARS-CoV-2 infection, the underlying mechanisms remain unclear. The broad range of COVID-19's bodily effects and responses after initial viral infection are also poorly understood. This workshop brought together multidisciplinary experts to showcase and discuss the latest research on long COVID and chronic inflammation that might be associated with the persistent sequelae following COVID-19 infection.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2 , Inflammation , Disease Progression
3.
J Immunol ; 207(11): 2625-2630, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34810268

ABSTRACT

Metabolism and inflammation have been viewed as two separate processes with distinct but critical functions for our survival: metabolism regulates the utilization of nutrients, and inflammation is responsible for defense and repair. Both respond to an organism's stressors to restore homeostasis. The interplay between metabolic status and immune response (immunometabolism) plays an important role in maintaining health or promoting disease development. Understanding these interactions is critical in developing tools for facilitating novel preventative and therapeutic approaches for diseases, including cancer. This trans-National Institutes of Health workshop brought together basic scientists, technology developers, and clinicians to discuss state-of-the-art, innovative approaches, challenges, and opportunities to understand and harness immunometabolism in modulating inflammation and its resolution.


Subject(s)
Inflammation/metabolism , Neoplasms/metabolism , Humans , Inflammation/immunology , Neoplasms/immunology
4.
FASEB J ; 33(12): 13085-13097, 2019 12.
Article in English | MEDLINE | ID: mdl-31577913

ABSTRACT

Inflammation is a normal process in our body; acute inflammation acts to suppress infections and support wound healing. Chronic inflammation likely leads to a wide range of diseases, including cancer. Tools to locate and monitor inflammation are critical for developing effective interventions to arrest inflammation and promote its resolution. To identify current clinical needs, challenges, and opportunities in advancing imaging-based evaluations of inflammatory status in patients, the U.S. National Institutes of Health convened a workshop on imaging inflammation and its resolution in health and disease. Clinical speakers described their needs for image-based capabilities that could help determine the extent of inflammatory conditions in patients to guide treatment planning and undertake necessary interventions. The imaging speakers showcased the state-of-the-art in vivo imaging techniques for detecting inflammation in different disease areas. Many imaging capabilities developed for 1 organ or disease can be adapted for other diseases and organs, whereas some have promise for clinical utility within the next 5-10 yr. Several speakers demonstrated that multimodal imaging measurements integrated with serum-based measures could improve in robustness for clinical utility. All speakers agreed that multiple inflammatory measures should be acquired longitudinally to comprehend the dynamics of unresolved inflammation that leads to disease development. They also agreed that the best strategies for accelerating clinical translation of imaging inflammation capabilities are through integration between new imaging techniques and biofluid-based biomarkers of inflammation as well as already established imaging measurements.-Liu, C. H., Abrams, N. D., Carrick, D. M., Chander, P., Dwyer, J., Hamlet, M. R. J., Kindzelski, A. L., PrabhuDas, M., Tsai, S.-Y. A., Vedamony, M. M., Wang, C., Tandon, P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities.


Subject(s)
Inflammation/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/immunology , Atherosclerosis/metabolism , Biomarkers/metabolism , Humans , Immunotherapy , Inflammation/diagnostic imaging , Inflammation/immunology , Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Positron-Emission Tomography
5.
J Biol Chem ; 287(36): 30552-9, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22745121

ABSTRACT

Previously, we showed that mutating RPE65 residue Phe-103 preferentially produces 13-cis-retinol instead of 11-cis-retinol, supporting a carbocation/radical cation mechanism of retinol isomerization. We asked whether this modulation of specificity can occur with residues other than Phe-103 and what role it plays in substrate binding and isomerization. We modeled the substrate-binding cleft of RPE65 to identify residues lining its surface. Many are phenylalanines and tyrosines, including three Phe residues (Phe-61, Phe-312, and Phe-526) forming an arch-like arrangement astride the cleft and Tyr-338. Also, Phe-418 sits at the neck of the cleft, lending a bend to the volume enclosed by the cleft. All mutations of Phe-61, Phe-312, and Phe-418 result in severely impaired or inactive enzyme. However, mutation of Phe-526 and Tyr-338, like Phe-103, decreases 11-cis-retinol formation, whereas increasing the 13-cis isomer. Significantly, 2 of these 3 residues, Phe-103 and Tyr-338, are located on putatively mobile interstrand loops. We propose that residual densities located in the binding cleft of the RPE65 structure represents a post-cleavage snapshot consistent not only with a fatty acid product, as originally modeled, but also an 11-cis-retinol product. Substrate docking simulations permit 11-cis- or 13-cis-retinyl ester binding in this relatively closed cleft, with the latter favored in F103L, F526A, and Y338A mutant structures, but prohibit binding of all-trans-retinyl ester, suggesting that isomerization occurs early in the temporal sequence, with O-alkyl ester cleavage occurring later. These findings provide insight into the mechanism of isomerization central to the visual cycle.


Subject(s)
Phenylalanine/chemistry , Tyrosine/chemistry , Vitamin A/chemistry , cis-trans-Isomerases/chemistry , Amino Acid Substitution , Animals , Binding Sites , Crystallography, X-Ray , Mice , Mutation, Missense , Phenylalanine/genetics , Phenylalanine/metabolism , Protein Binding , Tyrosine/genetics , Tyrosine/metabolism , Vitamin A/genetics , Vitamin A/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism
6.
Biochemistry ; 50(32): 6739-41, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21736383

ABSTRACT

We previously showed that RPE65 does not specifically produce 11-cis-retinol only but also 13-cis-retinol, supporting a carbocation or radical cation mechanism of isomerization. The intrinsic properties of conjugated polyene chains result in facile formation of radical cations in oxidative conditions. We hypothesized that such radical intermediates, if involved in the mechanism of RPE65, could be stabilized by spin traps. We tested a variety of hydrophilic and lipophilic spin traps for their ability to inhibit RPE65 isomerohydrolase activity. We found that the aromatic lipophilic spin traps such as N-tert-butyl-α-phenylnitrone (PBN), 2,2-dimethyl-4-phenyl-2H-imidazole-1-oxide (DMPIO), and nitrosobenzene (NB) strongly inhibit RPE65 isomerohydrolase activity in vitro.


Subject(s)
Carrier Proteins/metabolism , Eye Proteins/metabolism , Carrier Proteins/chemistry , Cell Line , Electron Spin Resonance Spectroscopy , Eye Proteins/chemistry , Humans , Models, Molecular , Spin Labels , cis-trans-Isomerases
7.
J Biol Chem ; 285(3): 1919-27, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19920137

ABSTRACT

The mechanism of retinol isomerization in the vertebrate retina visual cycle remains controversial. Does the isomerase enzyme RPE65 operate via nucleophilic addition at C(11) of the all-trans substrate, or via a carbocation mechanism? To determine this, we modeled the RPE65 substrate cleft to identify residues interacting with substrate and/or intermediate. We find that wild-type RPE65 in vitro produces 13-cis and 11-cis isomers equally robustly. All Tyr-239 mutations abolish activity. Trp-331 mutations reduce activity (W331Y to approximately 75% of wild type, W331F to approximately 50%, and W331L and W331Q to 0%) establishing a requirement for aromaticity, consistent with cation-pi carbocation stabilization. Two cleft residues modulate isomerization specificity: Thr-147 is important, because replacement by Ser increases 11-cis relative to 13-cis by 40% compared with wild type. Phe-103 mutations are opposite in action: F103L and F103I dramatically reduce 11-cis synthesis relative to 13-cis synthesis compared with wild type. Thr-147 and Phe-103 thus may be pivotal in controlling RPE65 specificity. Also, mutations affecting RPE65 activity coordinately depress 11-cis and 13-cis isomer production but diverge as 11-cis decreases to zero, whereas 13-cis reaches a plateau consistent with thermal isomerization. Lastly, experiments using labeled retinol showed exchange at 13-cis-retinol C(15) oxygen, thus confirming enzymatic isomerization for both isomers. Thus, RPE65 is not inherently 11-cis-specific and can produce both 11- and 13-cis isomers, supporting a carbocation (or radical cation) mechanism for isomerization. Specific visual cycle selectivity for 11-cis isomers instead resides downstream, attributable to mass action by CRALBP, retinol dehydrogenase 5, and high affinity of opsin apoproteins for 11-cis-retinal.


Subject(s)
Carbon/metabolism , Carrier Proteins/metabolism , Eye Proteins/metabolism , Vitamin A/chemistry , Vitamin A/metabolism , cis-trans-Isomerases/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Conserved Sequence , Eye Proteins/chemistry , Eye Proteins/genetics , Humans , Mice , Models, Molecular , Mutagenesis, Site-Directed , Oxygen/metabolism , Protein Conformation , Retina/cytology , Retina/enzymology , Stereoisomerism , Substrate Specificity , Tyrosine , cis-trans-Isomerases/chemistry , cis-trans-Isomerases/genetics
8.
BMC Biochem ; 10: 31, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20003456

ABSTRACT

BACKGROUND: beta-carotene 15,15'-monooxygenase (BCMO1) catalyzes the crucial first step in vitamin A biosynthesis in animals. We wished to explore the possibility that a carbocation intermediate is formed during the cleavage reaction of BCMO1, as is seen for many isoprenoid biosynthesis enzymes, and to determine which residues in the substrate binding cleft are necessary for catalytic and substrate binding activity. To test this hypothesis, we replaced substrate cleft aromatic and acidic residues by site-directed mutagenesis. Enzymatic activity was measured in vitro using His-tag purified proteins and in vivo in a beta-carotene-accumulating E. coli system. RESULTS: Our assays show that mutation of either Y235 or Y326 to leucine (no cation-pi stabilization) significantly impairs the catalytic activity of the enzyme. Moreover, mutation of Y326 to glutamine (predicted to destabilize a putative carbocation) almost eliminates activity (9.3% of wt activity). However, replacement of these same tyrosines with phenylalanine or tryptophan does not significantly impair activity, indicating that aromaticity at these residues is crucial. Mutations of two other aromatic residues in the binding cleft of BCMO1, F51 and W454, to either another aromatic residue or to leucine do not influence the catalytic activity of the enzyme. Our ab initio model of BCMO1 with beta-carotene mounted supports a mechanism involving cation-pi stabilization by Y235 and Y326. CONCLUSIONS: Our data are consistent with the formation of a substrate carbocation intermediate and cation-pi stabilization of this intermediate by two aromatic residues in the substrate-binding cleft of BCMO1.


Subject(s)
Cations/chemistry , Tyrosine/chemistry , beta-Carotene 15,15'-Monooxygenase/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Catalytic Domain , Diphenylamine/chemistry , Diphenylamine/pharmacology , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Sequence Homology, Amino Acid , Tyrosine/metabolism , beta Carotene/metabolism , beta-Carotene 15,15'-Monooxygenase/genetics , beta-Carotene 15,15'-Monooxygenase/metabolism
9.
FEBS J ; 275(4): 655-70, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18190533

ABSTRACT

The PyrR protein regulates expression of pyrimidine biosynthetic (pyr) genes in many bacteria. PyrR binds to specific sites in the 5' leader RNA of target operons and favors attenuation of transcription. Filter binding and gel mobility assays were used to characterize the binding of PyrR from Bacillus caldolyticus to RNA sequences (binding loops) from the three attenuation regions of the B. caldolyticus pyr operon. Binding of PyrR to the three binding loops and modulation of RNA binding by nucleotides was similar for all three RNAs. The apparent dissociation constants at 0 degrees C were in the range 0.13-0.87 nm in the absence of effectors; dissociation constants were decreased by three- to 12-fold by uridine nucleotides and increased by 40- to 200-fold by guanosine nucleotides. The binding data suggest that pyr operon expression is regulated by the ratio of intracellular uridine nucleotides to guanosine nucleotides; the effects of nucleoside addition to the growth medium on aspartate transcarbamylase (pyrB) levels in B. subtilis cells in vivo supported this conclusion. Analytical ultracentrifugation established that RNA binds to dimeric PyrR, even though the tetrameric form of unbound PyrR predominates in solution at the concentrations studied.


Subject(s)
Bacillus/drug effects , Bacterial Proteins/metabolism , Guanosine/pharmacology , RNA, Bacterial/metabolism , Uridine/pharmacology , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/genetics , Base Sequence , Electrophoretic Mobility Shift Assay , Magnesium/pharmacology , Molecular Sequence Data , Nucleic Acid Conformation , Operon/genetics , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Protein Binding/drug effects , Protons , Pyrimidine Nucleotides/pharmacology , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Temperature , Transcription, Genetic/drug effects
10.
Trends Mol Med ; 24(11): 919-930, 2018 11.
Article in English | MEDLINE | ID: mdl-30213702

ABSTRACT

The promise of tissue engineering and regenerative medicine to reduce the burden of disease and improve quality of life are widely acknowledged. Traditional tissue engineering and regenerative medicine approaches rely on generation of tissue constructs in vitro for subsequent transplantation or injection of exogenously manipulated cells into a host. While promising, few such therapies have succeeded in clinical practice. Here, we propose that recent advances in stem cell and developmental biology, immunology, bioengineering, and material sciences, position us to develop a new generation of in vivo regenerative medicine therapies, which we term autotherapies. Autotherapies are strategies based on optimizing endogenous tissue responses and capitalizing on manipulation of stem cell niches and endogenous tissue microenvironments to enhance tissue healing and regeneration.


Subject(s)
Regeneration , Wound Healing , Animals , Cell Lineage/genetics , Cellular Microenvironment , Cellular Reprogramming/genetics , Epigenesis, Genetic , Extracellular Matrix/metabolism , Humans , Stem Cell Niche , Stem Cells/cytology , Stem Cells/metabolism
11.
J Bacteriol ; 187(5): 1773-82, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15716449

ABSTRACT

PyrR is a protein that regulates the expression of genes and operons of pyrimidine nucleotide biosynthesis (pyr genes) in many bacteria. PyrR acts by binding to specific sequences on pyr mRNA and causing transcriptional attenuation when intracellular levels of uridine nucleotides are elevated. PyrR from Bacillus subtilis has been purified and extensively studied. In this work, we describe the purification to homogeneity and characterization of recombinant PyrR from the thermophile Bacillus caldolyticus and the crystal structures of unliganded PyrR and a PyrR-nucleotide complex. The B. caldolyticus pyrR gene was previously shown to restore normal regulation of the B. subtilis pyr operon in a pyrR deletion mutant. Like B. subtilis PyrR, B. caldolyticus PyrR catalyzes the uracil phosphoribosyltransferase reaction but with maximal activity at 60 degrees C. Crystal structures of B. caldolyticus PyrR reveal a dimer similar to the B. subtilis PyrR dimer and, for the first time, binding sites for nucleotides. UMP and GMP, accompanied by Mg2+, bind specifically to PyrR active sites. Nucleotide binding to PyrR is similar to other phosphoribosyltransferases, but Mg2+ binding differs. GMP binding was unexpected. The protein bound specific sequences of pyr RNA 100 to 1,000 times more tightly than B. subtilis PyrR, depending on the RNA tested and the assay method; uridine nucleotides enhanced RNA binding, but guanosine nucleotides antagonized it. The new findings of specific GMP binding and its antagonism of RNA binding suggest cross-regulation of the pyr operon by purines.


Subject(s)
Bacillus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Purine Nucleotides/metabolism , Pyrimidine Nucleotides/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Bacterial Proteins/isolation & purification , Cations, Divalent/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Molecular Structure , Pentosyltransferases/isolation & purification , Protein Binding , Protein Conformation , Protein Structure, Quaternary , RNA/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Repressor Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL