Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
EMBO J ; 39(7): e102008, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32115743

ABSTRACT

Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Adenosine Triphosphatases/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Histone Acetyltransferases/metabolism , Nucleosomes/metabolism , Protein Interaction Maps , Transcription Factors/metabolism
2.
Org Biomol Chem ; 22(4): 745-752, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37982316

ABSTRACT

Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.

3.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Article in English | MEDLINE | ID: mdl-32358072

ABSTRACT

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , DNA-Binding Proteins/genetics , Flowers/physiology , Histones/metabolism , Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly , Crystallography, X-Ray , DNA, Plant/genetics , DNA, Plant/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Histones/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Plants, Genetically Modified , Protein Domains
4.
Eur Radiol ; 33(9): 6001-6008, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37017704

ABSTRACT

OBJECTIVES: To investigate the correlation of R2* with vertebral fat fraction (FF) and bone mineral density (BMD), and to explore its role in the quantitative assessment of osteoporosis (OP). METHODS: A total of 83 patients with low back pain (59.77 ± 7.46 years, 30 males) were enrolled, which underwent lumbar MRI in IDEAL-IQ sequences and quantitative computed tomography (QCT) scanning within 48h. The FF, R2*, and BMD of all 415 lumbar vertebrae were respectively measured. According to BMD, all vertebrae were divided into BMD normal, osteopenia, and OP groups, and the difference of FF and R2* among groups was analyzed by one-way ANOVA. The correlation between R2*, FF, and BMD was analyzed by Pearson's test. Taking BMD as the gold standard, the efficacies for FF and R2* in diagnosis of OP and osteopenia were assessed by receiver operating characteristic curve, and their area under the curve (AUC) was compared with DeLong's test. RESULTS: The FF and R2* were statistically different among groups (F values of 102.521 and 11.323, both p < 0.05), and R2* were significantly correlated with FF and BMD, respectively (r values of -0.219 and 0.290, both p < 0.05). In diagnosis of OP and osteopenia, the AUCs were 0.776 and 0.778 for FF and 0.638 and 0.560 for R2*, and the AUCs of R2* were lower than those of FF, with Z values of 4.030 and 4.087, both p < 0.001. CONCLUSION: R2* is significantly correlated with FF and BMD and can be used as a complement to FF and BMD for quantitative assessment of OP. KEY POINTS: • R2* based on IDEAL-IQ sequences has a definite but weak linear relationship with FF and BMD. • FF is significantly correlated with BMD and can effectively evaluate BMAT. • R2* can be used as a complement to FF and BMD for fine quantification of bone mineral loss and bone marrow fat conversion.


Subject(s)
Bone Diseases, Metabolic , Low Back Pain , Osteoporosis , Male , Humans , Bone Density , Osteoporosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon
5.
J Org Chem ; 88(13): 8703-8708, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37246907

ABSTRACT

Herein, we reported the heterogeneous photocatalytic C-H alkylation of indoles with diazo compounds using graphitic carbon nitride (g-C3N4) as the photocatalyst. The reaction was carried out under a simple operation and mild conditions. In addition, the catalyst was found to be stable and reusable after five reaction cycles. The photochemical reaction proceeds via an intermediary of a carbon radical, which is generated from diazo compounds through a visible-light-promoted proton-coupled electron transfer (PCET) process.


Subject(s)
Indoles , Protons , Carbon , Nitriles/chemistry , Azo Compounds , Coloring Agents
6.
J Org Chem ; 88(13): 8441-8453, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37276376

ABSTRACT

Herein, we present a facile synthetic methodology to produce a range of N-(CH2-aryl/alkyl)-substituted N-(pyridin-2-yl)benzamides via palladium-mediated C(sp3)-H bond activation. The N-methyl-N-(pyridin-2-yl)benzamide precursor was first reacted with palladium(II) acetate in a stoichiometric manner to obtain the key dinuclear palladacycle intermediates, whose structures were elucidated by mass spectrometric, NMR spectroscopic, and X-ray crystallographic studies in detail. The subsequent C(sp3)-H bond functionalizations on the N-methyl group of the starting substrate show facile productions of the corresponding N-(CH2-aryl/alkyl)-substituted N-(pyridin-2-yl)benzamides with good functional group tolerance. A plausible mechanism was proposed based on density functional theory calculations in conjunction with kinetic isotope effect experiments. Finally, the synthetic transformation from the prepared N-(CH2-aryl)-N-(pyridin-2-yl)benzamides through debenzoylation to N-(CH2-aryl)-2-aminopyridine was successfully demonstrated.


Subject(s)
Benzamides , Palladium , Palladium/chemistry , Catalysis , Alkylation
7.
Environ Sci Technol ; 57(34): 12732-12740, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590181

ABSTRACT

Nonphotosynthetic microorganisms are typically unable to directly utilize light energy, but light might change the metabolic pathway of these bacteria indirectly by forming intermediates such as reactive oxygen species (ROS). This work investigated the role of light on nitrogen conversion by anaerobic ammonium oxidation (anammox) consortia. The results showed that high intensity light (>20000 lx) caused ca. 50% inhibition of anammox activity, and total ROS reached 167% at 60,000 lx. Surprisingly, 200 lx light was found to induce unexpected promotion of the nitrogen conversion rate, and ultraviolet light (<420 nm) was identified as the main contributor. Metagenomic and metatranscriptomic analyses revealed that the gene encoding cytochrome c peroxidase was highly expressed only under 200 lx light. 15N isotope tracing, gene abundance quantification, and external H2O2 addition experiments showed that photoinduced trace H2O2 triggered cytochrome c peroxidase expression to take up electrons from extracellular nonfermentative organics to synthesize NADH and ATP, thereby expediting nitrogen dissimulation of anammox consortia. External supplying reduced humic acid into a low-intensity light exposure system would result in a maximal 1.7-fold increase in the nitrogen conversion rate. These interesting findings may provide insight into the niche differentiation and widespread nature of anammox bacteria in natural ecotopes.


Subject(s)
Anaerobic Ammonia Oxidation , Cytochrome-c Peroxidase , Electrons , Hydrogen Peroxide , Reactive Oxygen Species , Nitrogen
8.
Can J Urol ; 30(6): 11714-11723, 2023 12.
Article in English | MEDLINE | ID: mdl-38104328

ABSTRACT

INTRODUCTION: Robot-assisted laparoscopic prostatectomy (RALP) and transurethral resection of bladder tumor (TURBT) are two common surgeries for prostate and bladder cancer. We aim to assess the trends in the site of care for RALP and TURBT before and after the COVID outbreak. MATERIALS AND METHODS: We identified adults who underwent RALP and TURBT within the California Healthcare Cost and Utilization Project State Inpatient Database and the State Ambulatory Surgery Database between 2018 and 2020. Multivariable analysis and spline analysis with a knot at COVID outbreak were performed to investigate the time trend and factors associated with ambulatory RALP and TURBT. RESULTS: Among 17,386 RALPs, 6,774 (39.0%) were ambulatory. Among 25,070 TURBTs, 21,573 (86.0%) were ambulatory. Pre-COVID, 33.5% of RALP and 85.3% and TURBT were ambulatory, which increased to 53.8% and 88.0% post-COVID (both p < 0.001). In multivariable model, RALP and TURBT performed after outbreak in March 2020 were more likely ambulatory (OR 2.31, p < 0.0001; OR 1.25, p < 0.0001). There was an overall increasing trend in use of ambulatory RALP both pre- and post-COVID, with no significant change of trend at the time of outbreak (p = 0.642). TURBT exhibited an increased shift towards ambulatory sites post-COVID (p < 0.0001). CONCLUSIONS: We found a shift towards ambulatory RALP and TURBT following COVID outbreak. There was a large increase in ambulatory RALP post-COVID, but the trend of change was not significantly different pre- and post-COVID - possibly due to a pre-existing trend towards ambulatory RALP which predated the pandemic.


Subject(s)
COVID-19 , Laparoscopy , Prostatic Neoplasms , Urinary Bladder Neoplasms , Male , Adult , Humans , Pandemics , Prostatectomy , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Ambulatory Surgical Procedures , COVID-19/epidemiology , Urinary Bladder Neoplasms/surgery
9.
J Am Chem Soc ; 144(27): 12147-12157, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35767424

ABSTRACT

Mitigation of biofouling and the host's foreign body response (FBR) is a critical challenge with biomedical implants. The surface coating with various anti-fouling materials provides a solution to overcome it, but limited options in clinic and their potential immunogenicity drive the development of more alternative coating materials. Herein, inspired by liquid-liquid phase separation of intrinsically disordered proteins (IDPs) to form separated condensates in physiological conditions, we develop a new type of low-fouling biomaterial based on flexible IDP of FUS protein containing rich hydrophilic residues. A chemical structure-defined FUS IDP sequence tagged with a tetra-cysteine motif (IDPFUS) was engineered and applied for covalent immobilization on various surfaces to form a uniform layer of protein tangles, which boosted strong hydration on surfaces, as revealed by molecular dynamics simulation. The IDPFUS-coated surfaces displayed excellent performance in resisting adsorption of various proteins and adhesion of different cells, platelets, and bacteria. Moreover, the IDPFUS-coated implants largely mitigated the host's FBR compared with bare implants and particularly outperformed PEG-coated implants in reducing collagen encapsulation. Thus, this novel low-fouling and anti-FBR strategy provides a potential surface coating material for biomedical implants, which will also shed light on exploring similar applications of other IDP proteins.


Subject(s)
Biofouling , Foreign Bodies , Intrinsically Disordered Proteins , Humans , Biofouling/prevention & control , Hydrophobic and Hydrophilic Interactions , Surface Properties
10.
EMBO J ; 37(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30104406

ABSTRACT

In eukaryotes, heterochromatin regions are typically subjected to transcriptional silencing. DNA methylation has an important role in such silencing and has been studied extensively. However, little is known about how methylated heterochromatin regions are subjected to silencing. We conducted a genetic screen and identified an epcr (enhancer of polycomb-related) mutant that releases heterochromatin silencing in Arabidopsis thaliana We demonstrated that EPCR1 functions redundantly with its paralog EPCR2 and interacts with PWWP domain-containing proteins (PWWPs), AT-rich interaction domain-containing proteins (ARIDs), and telomere repeat binding proteins (TRBs), thus forming multiple functionally redundant protein complexes named PEAT (PWWPs-EPCRs-ARIDs-TRBs). The PEAT complexes mediate histone deacetylation and heterochromatin condensation and thereby facilitate heterochromatin silencing. In heterochromatin regions, the production of small interfering RNAs (siRNAs) and DNA methylation is repressed by the PEAT complexes. The study reveals how histone deacetylation, heterochromatin condensation, siRNA production, and DNA methylation interplay with each other and thereby maintain heterochromatin silencing.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Gene Silencing/physiology , Heterochromatin/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Acetylation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Heterochromatin/genetics , Histones/genetics , Multiprotein Complexes/genetics
11.
Cardiovasc Diabetol ; 21(1): 197, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171554

ABSTRACT

BACKGROUND: Malignant ventricular arrhythmia (VA) is a major contributor to sudden cardiac death (SCD) in patients with pulmonary arterial hypertension (PAH)-induced right heart failure (RHF). Recently, dapagliflozin (DAPA), a sodium/glucose cotransporter-2 inhibitor (SGLT2i), has been found to exhibit cardioprotective effects in patients with left ventricular systolic dysfunction. In this study, we examined the effects of DAPA on VA vulnerability in a rat model of PAH-induced RHF. METHODS: Rats randomly received monocrotaline (MCT, 60 mg/kg) or vehicle via a single intraperitoneal injection. A day later, MCT-injected rats were randomly treated with placebo, low-dose DAPA (1 mg/kg/day), or high-dose (3 mg/kg/day) DAPA orally for 35 days. Echocardiographic analysis, haemodynamic experiments, and histological assessments were subsequently performed to confirm the presence of PAH-induced RHF. Right ventricle (RV) expression of calcium (Ca2+) handling proteins were detected via Western blotting. RV expression of connexin 43 (Cx43) was determined via immunohistochemical staining. An optical mapping study was performed to assess the electrophysiological characteristics in isolated hearts. Cellular Ca2+ imaging from RV cardiomyocytes (RVCMs) was recorded using Fura-2 AM or Fluo-4 AM. RESULTS: High-dose DAPA treatment attenuated RV structural remodelling, improved RV function, alleviated Cx43 remodelling, increased the conduction velocity, restored the expression of key Ca2+ handling proteins, increased the threshold for Ca2+ and action potential duration (APD) alternans, decreased susceptibility to spatially discordant APD alternans and spontaneous Ca2+ events, promoted cellular Ca2+ handling, and reduced VA vulnerability in PAH-induced RHF rats. Low-dose DAPA treatment also showed antiarrhythmic effects in hearts with PAH-induced RHF, although with a lower level of efficacy. CONCLUSION: DAPA administration reduced VA vulnerability in rats with PAH-induced RHF by improving RVCM Ca2+ handling.


Subject(s)
Heart Failure , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Animals , Arrhythmias, Cardiac , Benzhydryl Compounds , Calcium/metabolism , Connexin 43/metabolism , Disease Models, Animal , Fura-2 , Glucose , Glucosides , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/prevention & control , Monocrotaline/toxicity , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/complications , Pulmonary Arterial Hypertension/drug therapy , Rats , Sodium , Ventricular Dysfunction, Right/drug therapy , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/prevention & control , Ventricular Remodeling
12.
Genet Res (Camb) ; 2022: 1901256, 2022.
Article in English | MEDLINE | ID: mdl-36325266

ABSTRACT

Objective: Clopidogrel is widely used for preventing ischemic complications related to cardiovascular diseases. However, many patients experience clopidogrel resistance (CR). The polymorphisms of CYP2C19 have been implicated in CR, but CYP2C19 polymorphism considerably varies with both ethnic group and geographical location. This study aimed to investigate the association between CYP2C19 polymorphisms and clopidogrel resistance (CR) in patients with coronary heart disease and ischemic stroke among Han and Tibetan populations in Qinghai Province, China. Methods: From June 2019 to January 2020, patients who were diagnosed with coronary heart disease or cerebral infarction in internal medicine of Qinghai Provincial People's Hospital and had taken dual antiplatelet drugs were included in this study. Blood was collected and routine items were completed. Whole exome sequencing was performed for CYP2C19 genetic polymorphisms of CYP2C19∗2 (rs4244285), CYP2C19∗3 (rs4986893), and CYP2C19∗17 (rs12248560). Results: A total of 91 patients with coronary heart disease or cerebral infarction (67 Han people (65.99 ± 12.25 years old) and 24 Tibetan (63.6324 Tib years old)) including 52 cases with CR and 39 cases with non-CR were enrolled in this study. For the Han population, the differences in age, glycosylated hemoglobin, activated partial thromboplastin time (APTT), gender, aspirin resistance, and diabetes were significant between the CR and non-CR groups. For the Tibetan population, the two groups showed no significant difference in all indicators. There was no significant difference between CR and non-CR groups for all genotypes (CYP2C19 ∗2, ∗3, and ∗17) in either Han or Tibetan populations. For the Han populations, age, APTT, and aspirin resistance were significantly correlated with CR. Conclusion: The present study indicated that CYP2C19∗2, CYP2C19∗3, and CYP2C19∗17 alleles were not correlated with CR for both Han and Tibetan populations in Qinghai Province, while age, APTT, and aspirin resistance were independent risk factors of CR in this region.


Subject(s)
Coronary Disease , Ischemic Stroke , Humans , Middle Aged , Aged , Clopidogrel/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Ticlopidine , Polymorphism, Genetic/genetics , Genotype , Aspirin , Coronary Disease/drug therapy , Coronary Disease/genetics , Cerebral Infarction , China
13.
Langmuir ; 38(45): 13822-13832, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36326574

ABSTRACT

Flexible surface-enhanced Raman scattering (SERS) substrates have become one of the research hot spots due to the facile sampling by swabbing or wrapping on rough surfaces and the sensitive and nondestructive detection of contaminants. In this work, we proposed a simple and fast in situ reduction method to prepare Ag nanoparticles (Ag NPs) composited agar hydrogel (Ag NPs@Agar) flexible SERS substrate. Owing to the three-dimensional (3D) structure, good hydrophilicity and adsorption of the agar hydrogel, Ag NPs were grown uniformly in the 3D cross-linked structure. The distribution density of Ag NPs was further increased by the volume shrinkage when the hydrogel was dried in air. This high density and uniformly distribution of Ag NPs produced a large number of highly active SERS regions. In addition, the sensitivity of Ag NPs@Agar was further improved with the assistance of hydrophilic agar gel, which can trap the probe molecules into highly active SERS areas. The SERS results showed that the substrate can be used to detect dye molecules (rhodamine 6G), the minimum detectable concentration was 10-15 M, the relative standard deviation tested at 18 different positions was only 7.58%, and the intensity of the characteristic peak at 611 cm-1 decreased only about 10% after 49 days of storage, demonstrating the superior stability. Moreover, the Ag NPs@Agar substrate also could successfully achieve the micro-trace detection of melamine and sodium penicillin G in Xinjiang specialty camel milk powder. The above available results show that the prepared flexible Ag NPs@Agar SERS substrates possess potentials for the illegal additives and antibiotics in food safety analysis.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Agar , Spectrum Analysis, Raman/methods , Hydrogels
14.
World J Urol ; 40(11): 2649-2656, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36125504

ABSTRACT

PURPOSE: To assess whether the 5-item Frailty Index (5i-FI) predicts surgical complications of endoscopic surgery for benign prostatic obstruction (BPO) and examine the rates of these complications across BPO surgical modalities adjusting for patient frailty. METHODS: The ACS-NSQIP registry was queried for patients who underwent transurethral resection of the prostate (TURP), photoselective vaporization of the prostate (PVP), and laser enucleation of the prostate (LEP) between 2009 and 2019. Patients' frailties were estimated using the 5i-FI. We assessed the association between 5i-FI and the following endpoints: all complications, major complications (Clavien-Dindo ≥ 3), length of stay (LOS) ≥ 2 days, and 30-day postoperative readmission. Inverse probability of treatment weighting (IPTW) was used to account for selection bias in treatment allocation. IPTW-adjusted rates for 30-day complications were compared between surgical modalities. RESULTS: The cohort included 38,399 (62.6%) TURP, 19,121 (31.2%) PVP, and 3797 (6.2%) LEP. Men with 5i-FI score ≥ 2 were more likely to receive TURP (22.7%) and PVP (22.5%) than LEP (18.8%). 5i-FI ≥ 2 was associated with higher odds of all complications (OR 1.50), major complications (OR 1.63), LOS ≥ 2 (OR 1.31), and readmission (OR 1.65). After IPTW, LEP had the lowest rates for all complications (6.29%; 95%CI 5.48-7.20), major complications (2.30%; 95%CI 1.83-2.89), and readmission (3.80%; 95%CI 3.18-4.53). CONCLUSION: The 5i-FI score is an independent predictor of 30-day postoperative surgical complications after endoscopic BPO surgery. After IPTW, LEP and PVP were associated with lower rates of complications than TURP. However, frail patients were less likely to undergo PVP and LEP. Preoperative frailty assessment could improve risk stratification before BPO surgery.


Subject(s)
Frailty , Laser Therapy , Prostatic Hyperplasia , Transurethral Resection of Prostate , Urethral Obstruction , Male , Humans , Transurethral Resection of Prostate/adverse effects , Prostatic Hyperplasia/complications , Prostatic Hyperplasia/surgery , Frailty/complications , Treatment Outcome , Laser Therapy/adverse effects , Urethral Obstruction/etiology , Postoperative Complications/etiology
15.
J Org Chem ; 87(12): 8198-8202, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35612828

ABSTRACT

Herein, we report a halogen-bonding-based electron donor-acceptor (EDA) complex-promoted photoreaction for the synthesis of C2-malonylated indoles. The protocol provides access to a broad range of functionalized indoles in good yields through the coupling reaction of indoles with diethyl bromomalonate under visible-light irradiation without the need for any transition-metal catalyst or photocatalyst.

16.
J Org Chem ; 87(15): 9851-9863, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35844185

ABSTRACT

The synthesis of a range of 3,3'-bipyrazolo[1,5-a]pyridine derivatives via direct cross-dehydrogenative coupling of pyrazolo[1,5-a]pyridine precursors is herein presented. This simple and efficient methodology involving palladium(II)-catalyzed C-H bond activation showed good functional group tolerance and product yield (up to 94%). Through the mechanistic insights gained from both kinetic isotope effect experimental studies and density functional theory calculations, a plausible reaction mechanism was outlined. Furthermore, subsequent derivatizations of the resulting 7,7'-diaryl-3,3'-bipyrazolo[1,5-a]pyridines, executed by performing palladium-mediated ortho C-H bond activation followed by hypervalent iodine-induced chlorination, rendered this series of compounds more extended π-conjugation and twisted conformations. Our study on these bipyrazolo[1,5-a]pyridine-based luminogens provides new opportunities for tailor-made organic luminescent materials.


Subject(s)
Palladium , Pyridines , Catalysis , Halogenation , Iodides , Palladium/chemistry , Pyridines/chemistry
17.
Angew Chem Int Ed Engl ; 61(31): e202204589, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35451151

ABSTRACT

A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.

18.
Sensors (Basel) ; 21(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540774

ABSTRACT

In order to reduce Gaussian noise, this paper proposes a method via taking the average of the upper and lower envelopes generated by capturing the high and low peaks of the input signal. The designed fast response filter has no cut-off frequency, so the high order harmonics of the actual signal remain unchanged. Therefore, it can immediately respond to the changes of input signal and retain the integrity of the actual signal. In addition, it has only a small phase delay. The slew rate, phase delay and frequency response can be confirmed from the simulation results of Multisim 13.0. The filter outlined in this article can retain the high order harmonics of the original signal, achieving a slew rate of 6.34 V/µs and an almost zero phase difference. When using our filter to physically test the input signal with a noise level of 3 Vp-p Gaussian noise, a reduced noise signal of 120 mVp-p is obtained. The noise can be suppressed by up to 4% of the raw signal.

19.
Plant Physiol ; 179(2): 656-670, 2019 02.
Article in English | MEDLINE | ID: mdl-30567970

ABSTRACT

Plant roots rely on inorganic orthophosphate (Pi) transporters to acquire soluble Pi from soil solutions that exists at micromolar levels in natural ecosystems. Here, we functionally characterized a rice (Oryza sativa) Pi transporter, Os Phosphate Transporter-1;3 (OsPHT1;3), that mediates Pi uptake, translocation, and remobilization. OsPHT1;3 was directly regulated by Os Phosphate Starvation Response-2 and, in response to Pi starvation, showed enhanced expression in young leaf blades and shoot basal regions and even more so in roots and old leaf blades. OsPHT1;3 was able to complement a yeast mutant strain defective in five Pi transporters and mediate Pi influx in Xenopus laevis oocytes. Overexpression of OsPHT1;3 led to increased Pi concentration both in roots and shoots. However, unlike that reported for other known OsPHT1 members that facilitate Pi uptake at relatively higher Pi levels, mutation of OsPHT1;3 impaired Pi uptake and root-to-shoot Pi translocation only when external Pi concentration was below 5 µm Moreover, in basal nodes, the expression of OsPHT1;3 was restricted to the phloem of regular vascular bundles and enlarged vascular bundles. An isotope labeling experiment with 32P showed that ospht1;3 mutant lines were impaired in remobilization of Pi from source to sink leaves. Furthermore, overexpression and mutation of OsPHT1;3 led to reciprocal alteration in the expression of OsPHT1;2 and several other OsPHT1 genes. Yeast-two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays all demonstrated a physical interaction between OsPHT1;3 and OsPHT1;2. Taken together, our results indicate that OsPHT1;3 acts as a crucial factor for Pi acquisition, root-to-shoot Pi translocation, and redistribution of phosphorus in plants growing in environments with extremely low Pi levels.


Subject(s)
Oryza/metabolism , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Animals , Biological Transport , Female , Gene Expression Regulation, Plant , Mutation , Oocytes/metabolism , Oryza/genetics , Phloem/genetics , Phloem/metabolism , Phosphate Transport Proteins/genetics , Plant Proteins/genetics , Plant Roots/metabolism , Plant Shoots/metabolism , Plants, Genetically Modified , Protein Interaction Maps , Two-Hybrid System Techniques , Xenopus laevis
20.
Soft Matter ; 16(33): 7652-7658, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32797141

ABSTRACT

We developed a new responsive peptide hydrogel FmocFFpSC(oNB)-PEG, which could achieve gel formation induced by calcium ions and sequential dissolution stimulated by light. It provides a potential delivery system for the efficient encapsulation of drugs and their controlled release in a spatial and temporal way.


Subject(s)
Hydrogels , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL