Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Environ Microbiol ; 19(8): 3201-3218, 2017 08.
Article in English | MEDLINE | ID: mdl-28574203

ABSTRACT

Biogenic production and release of methane (CH4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing.


Subject(s)
Bacteria/isolation & purification , Permafrost/microbiology , Phylogeny , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbon/analysis , Carbon/metabolism , Climate , Ecosystem , Methane/analysis , Methane/metabolism , Microbial Consortia , Permafrost/chemistry , Sweden
2.
Sci Total Environ ; 820: 152757, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35031367

ABSTRACT

Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.


Subject(s)
Permafrost , Sphagnopsida , Plants , Soil/chemistry , Spectroscopy, Fourier Transform Infrared
3.
J Air Waste Manag Assoc ; 59(12): 1399-404, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20066905

ABSTRACT

Estimates of landfill gas (LFG) collection efficiency are required to estimate methane emissions and the environmental performance of a solid waste landfill. The gas collection efficiency varies with time on the basis of the manner in which landfills are designed, operated, and regulated. The literature supports instantaneous collection efficiencies varying between 50% and near 100%, dependent on the cover type and the coverage of the LFG collection system. The authors suggest that the temporally weighted gas collection efficiency, which considers total gas production and collection over the landfill life, is the appropriate way to report collection efficiency. This value was calculated for a range of decay rates representative of refuse buried in arid and wet areas (i.e., >63.5 cm precipitation) and for bioreactor landfills. Temporally weighted collection efficiencies ranging from 67 to 91%, 62 to 86%, and 55 to 78% were calculated at decay rates of 0.02, 0.04, and 0.07 yr(-1), respectively. With aggressive gas collection, as would be implemented for a bioreactor landfill, estimated gas collection efficiency ranged from 84 to 67% at decay rates of 0.04 to 0.15 yr(-1), respectively.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Refuse Disposal/methods , Conservation of Natural Resources/methods , Environmental Monitoring , Models, Theoretical
4.
PLoS One ; 10(7): e0132341, 2015.
Article in English | MEDLINE | ID: mdl-26172639

ABSTRACT

The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess (234)Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4-5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess (234)Th depths, accumulation rates, and (234)Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.


Subject(s)
Geologic Sediments/chemistry , Geologic Sediments/microbiology , Petroleum Pollution/adverse effects , Foraminifera , Gulf of Mexico , Half-Life , Radioisotopes/analysis , Radioisotopes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL