Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 186(7): 1309-1327, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001498

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Central Nervous System , Neuroglia , Cell Physiological Phenomena , Inflammation/pathology
2.
Cell ; 176(3): 610-624.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612739

ABSTRACT

Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.


Subject(s)
Immunoglobulin A/metabolism , Interleukin-10/metabolism , Intestines/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Immunoglobulin A/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neuroimmunomodulation/immunology , Plasma Cells/metabolism
3.
Nature ; 627(8005): 865-872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509377

ABSTRACT

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Epigenetic Memory , Multiple Sclerosis , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Astrocytes/enzymology , Astrocytes/metabolism , Astrocytes/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , CRISPR-Cas Systems , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Single-Cell Gene Expression Analysis , Transposases/metabolism
5.
Nature ; 614(7947): 326-333, 2023 02.
Article in English | MEDLINE | ID: mdl-36599367

ABSTRACT

Multiple sclerosis is a chronic inflammatory disease of the central nervous system1. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis2,3. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis4. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Microfluidics , Multiple Sclerosis , Nucleic Acids , Single-Cell Gene Expression Analysis , Animals , Humans , Mice , Astrocytes/metabolism , Astrocytes/pathology , Gene Expression Regulation , Mice, Knockout , Multiple Sclerosis/pathology , Microfluidics/methods , Single-Cell Gene Expression Analysis/methods , Nucleic Acids/analysis , Gene Editing
7.
Brain ; 146(4): 1483-1495, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36319587

ABSTRACT

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Blood-Brain Barrier/pathology , Brain/pathology , CD146 Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Endothelium/pathology , Multiple Sclerosis/pathology , Neuroinflammatory Diseases
8.
J Neuroinflammation ; 19(1): 27, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109863

ABSTRACT

BACKGROUND: Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS). METHODS: SPMs and the key biosynthetic enzymes involved in SPM production were analysed by metabololipidomics and qPCR in active brain lesions, serum and peripheral blood mononuclear cells (PBMC) of MS patients as well as in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). We also tested the therapeutic actions of the SPM coined Maresin-1 (MaR1) in EAE mice and studied its impact on inflammation by doing luminex and flow cytometry analysis. RESULTS: We show that levels of MaR1 and other SPMs were below the limit of detection or not increased in the spinal cord of EAE mice, whereas the production of pro-inflammatory eicosanoids was induced during disease progression. Similarly, we reveal that SPMs were undetected in serum and active brain lesion samples of MS patients, which was linked to impaired expression of the enzymes involved in the biosynthetic pathways of SPMs. We demonstrate that exogenous administration of MaR1 in EAE mice suppressed the protein levels of various pro-inflammatory cytokines and reduced immune cells counts in the spinal cord and blood. MaR1 also decreased the numbers of Th1 cells but increased the accumulation of regulatory T cells and drove macrophage polarization towards an anti-inflammatory phenotype. Importantly, we provide clear evidence that administration of MaR1 in mice with clinical signs of EAE enhanced neurological outcomes and protected from demyelination. CONCLUSIONS: This study reveals that there is an imbalance in the production of SPMs in MS patients and in EAE mice, and that increasing the bioavailability of SPMs, such as MaR1, minimizes inflammation and mediates therapeutic actions. Thus, these data suggest that immunoresolvent therapies, such as MaR1, could be a novel avenue for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Animals , Anti-Inflammatory Agents/pharmacology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Spinal Cord/pathology
9.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499143

ABSTRACT

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease driven by inflammation and demyelination in the brain, spinal cord, and optic nerve. Optic neuritis, characterized by inflammation and demyelination of the optic nerve, is a symptom in many patients with MS. The optic nerve is the highway for visual information transmitted from the retina to the brain. It contains axons from the retinal ganglion cells (RGCs) that reside in the retina, myelin forming oligodendrocytes and resident microglia and astrocytes. Inflammation, demyelination, and axonal degeneration are also present in the optic nerve of mice subjected to experimental autoimmune encephalomyelitis (EAE), a preclinical mouse model of MS. Monitoring the optic nerve in EAE is a useful strategy to study the presentation and progression of pathology in the visual system; however, current approaches have relied on sectioning, staining and manual quantification. Further, information regarding the spatial load of lesions and inflammation is dependent on the area of sectioning. To better characterize cellular pathology in the EAE model, we employed a tissue clearing and 3D immunolabelling and imaging protocol to observe patterns of immune cell infiltration and activation throughout the optic nerve. Increased density of TOPRO staining for nuclei captured immune cell infiltration and Iba1 immunostaining was employed to monitor microglia and macrophages. Axonal degeneration was monitored by neurofilament immunolabelling to reveal axonal swellings throughout the optic nerve. In parallel, we developed a convolutional neural network with a UNet architecture (CNN-UNet) called BlebNet for automated identification and quantification of axonal swellings in whole mount optic nerves. Together this constitutes a toolkit for 3-dimensional immunostaining to monitor general optic nerve pathology and fast automated quantification of axonal defects that could also be adapted to monitor axonal degeneration and inflammation in other neurodegenerative disease models.


Subject(s)
Deep Learning , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Optic Neuritis , Mice , Animals , Mice, Inbred C57BL , Optic Neuritis/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/pathology , Nerve Degeneration , Inflammation , Disease Models, Animal
10.
Mult Scler ; 26(12): 1448-1458, 2020 10.
Article in English | MEDLINE | ID: mdl-31971074

ABSTRACT

Helminthic worms are ancestral members of the intestinal ecosystem that have been largely eradicated from the general population in industrialized countries. Immunomodulatory mechanisms induced by some helminths mediate a "truce" between the mammalian host and the colonizing worm, thus allowing for long-term persistence in the absence of immune-mediated collateral tissue damage. This concept and the geographic discrepancy between global burdens of chronic inflammatory diseases and helminth infection have sparked interest in the potential of using helminthic worms as a therapeutic intervention to limit the progression of autoimmune diseases such as multiple sclerosis (MS). Here, we present and evaluate the evidence for this hypothesis in the pre-clinical animal model of MS, experimental autoimmune encephalitis, in helminth-infected MS patients and in clinical trials of administered helminth immunotherapy (HIT).


Subject(s)
Helminthiasis , Helminths , Multiple Sclerosis , Animals , Ecosystem , Helminthiasis/therapy , Humans , Immunotherapy , Multiple Sclerosis/therapy
11.
Brain ; 142(10): 2979-2995, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31412103

ABSTRACT

Multiple sclerosis is a chronic inflammatory, demyelinating, and neurodegenerative disease affecting the brain, spinal cord and optic nerves. Neuronal damage is triggered by various harmful factors that engage diverse signalling cascades in neurons; thus, therapeutic approaches to protect neurons will need to focus on agents that can target multiple biological processes. We have therefore focused our attention on microRNAs: small non-coding RNAs that primarily function as post-transcriptional regulators that target messenger RNAs and repress their translation into proteins. A single microRNA can target many functionally related messenger RNAs making microRNAs powerful epigenetic regulators. Dysregulation of microRNAs has been described in many neurodegenerative diseases including multiple sclerosis. Here, we report that two microRNAs, miR-223-3p and miR-27a-3p, are upregulated in neurons in the experimental autoimmune encephalomyelitis mouse model of CNS inflammation and in grey matter-containing multiple sclerosis lesions. Prior work has shown peripheral blood mononuclear cell conditioned media causes sublethal degeneration of neurons in culture. We find overexpression of miR-27a-3p or miR-223-3p protects dissociated cortical neurons from condition media mediated degeneration. Introduction of miR-223-3p in vivo in mouse retinal ganglion cells protects their axons from degeneration in experimental autoimmune encephalomyelitis. In silico analysis revealed that messenger RNAs involved in glutamate receptor signalling are enriched as miR-27a-3p and miR-223-3p targets. We observe that antagonism of NMDA and AMPA type glutamate receptors protects neurons from condition media dependent degeneration. Our results suggest that miR-223-3p and miR-27a-3p are upregulated in response to inflammation to mediate a compensatory neuroprotective gene expression program that desensitizes neurons to glutamate by targeting messenger RNAs involved in glutamate receptor signalling.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , MicroRNAs/genetics , Neurons/pathology , Animals , Axons/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Glutamic Acid/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Mice , MicroRNAs/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurodegenerative Diseases/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Spinal Cord/pathology
12.
Proc Natl Acad Sci U S A ; 114(4): E524-E533, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069965

ABSTRACT

Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelial Cells/metabolism , Activated-Leukocyte Cell Adhesion Molecule/genetics , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Homeostasis , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Severity of Illness Index , Spinal Cord/metabolism , Tight Junction Proteins/metabolism
13.
Brain Behav Immun ; 69: 48-56, 2018 03.
Article in English | MEDLINE | ID: mdl-29289661

ABSTRACT

The blood-brain barrier (BBB) assures brain homeostasis through the specialized function of brain endothelial cells (BECs). Dysfunction of the BBB due to inflammatory processes is associated with several neurological disorders, including multiple sclerosis (MS). Understanding the mechanisms that underlie these processes may ultimately lead to new therapeutic strategies to restore BBB function, thereby fighting disease progression. In this study, we demonstrate for the first time a critical role of the Notch signaling pathway in the function of the BBB under resting and inflammatory conditions. Inhibition of the Notch signaling, either by a γ-secretase inhibitor or by genetic ablation of endothelial NOTCH, led to BBB dysfunction in vitro as evidenced by reduced transendothelial electrical resistance (TEER), altered localization and loss of endothelial junction molecules and enhanced macromolecular permeability. Inflamed BECs showed impaired Notch signaling as indicated by reduced level of the downstream targets HES-1 and HES-5. Notably, barrier function was further reduced when the Notch signaling was inhibited under inflammatory conditions, suggesting an additive effect of the Notch signaling and inflammation in BECs. In contrast, inducible overexpression of Notch-intracellular domain 1 (NICD1) rescued the detrimental effect caused by inflammation. Furthermore, we provide evidence that inflammation reduced the expression of the glycosyltransferase Lunatic Fringe (LFNG), a known positive regulator of Notch glycosylation and signaling, thereby leading to disrupted barrier function of BECs. Together, our data demonstrate the functional importance of the conserved Notch signaling pathway in control of the brain endothelial barrier and shed light on the role of LFNG in the regulation of Notch glycosylation and signaling in the adult brain vasculature in both health and disease.


Subject(s)
Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Glycosyltransferases/metabolism , Inflammation/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Brain/metabolism , Cell Line , Cell Survival/physiology , Glycosylation , Humans , Permeability
14.
Ann Neurol ; 78(1): 39-53, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25869475

ABSTRACT

OBJECTIVE: Although Tc17 lymphocytes are enriched in the central nervous system (CNS) of multiple sclerosis (MS) subjects and of experimental autoimmune encephalomyelitis (EAE) animals, limited information is available about their recruitment into the CNS and their role in neuroinflammation. Identification of adhesion molecules used by autoaggressive CD8(+) T lymphocytes to enter the CNS would allow further characterization of this pathogenic subset and could provide new therapeutic targets in MS. We propose that melanoma cell adhesion molecule (MCAM) is a surface marker and adhesion molecule used by pathogenic CD8(+) T lymphocytes to access the CNS. METHODS: Frequency, phenotype, and function of MCAM(+) CD8(+) T lymphocytes was characterized using a combination of ex vivo, in vitro, in situ, and in vivo approaches in humans and mice, including healthy controls, MS subjects, and EAE animals. RESULTS: Herein, we report that MCAM is expressed by human effector CD8(+) T lymphocytes and it is strikingly upregulated during MS relapses. We further demonstrate that MCAM(+) CD8(+) T lymphocytes express more interleukin 17, interferon γ, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor than MCAM(-) lymphocytes, and exhibit an enhanced killing capacity toward oligodendrocytes. MCAM blockade restricts the transmigration of CD8(+) T lymphocytes across human blood-brain barrier endothelial cells in vitro, and blocking or depleting MCAM in vivo reduces chronic neurological deficits in active, transfer, and spontaneous progressive EAE models. INTERPRETATION: Our data demonstrate that MCAM identifies encephalitogenic CD8(+) T lymphocytes, suggesting that MCAM could represent a biomarker of MS disease activity and a valid target for the treatment of neuroinflammatory conditions.


Subject(s)
Blood-Brain Barrier/metabolism , CD8-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis, Relapsing-Remitting/metabolism , Animals , Blood-Brain Barrier/immunology , CD146 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Encephalomyelitis, Autoimmune, Experimental/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , In Vitro Techniques , Inflammation , Interferon-gamma/immunology , Interleukin-17/immunology , Mice , Mice, Transgenic , Multiple Sclerosis, Relapsing-Remitting/immunology , Oligodendroglia , Tumor Necrosis Factor-alpha/immunology
15.
bioRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38260616

ABSTRACT

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.

16.
Article in English | MEDLINE | ID: mdl-36446612

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS: Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS: We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION: In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.


Subject(s)
Encephalitis , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Animals , Mice , Encephalomyelitis, Autoimmune, Experimental/genetics , Transcriptome , Multiple Sclerosis/genetics , Brain , Endothelium
17.
Science ; 379(6636): 1023-1030, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893254

ABSTRACT

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Subject(s)
Amphiregulin , Astrocytes , Autocrine Communication , Genetic Testing , Microfluidic Analytical Techniques , Microglia , Astrocytes/physiology , Genetic Testing/methods , High-Throughput Screening Assays , Microfluidic Analytical Techniques/methods , Microglia/physiology , Amphiregulin/genetics , Autocrine Communication/genetics , Gene Expression , Humans
18.
Article in English | MEDLINE | ID: mdl-36241608

ABSTRACT

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), peripheral immune cells use various cell trafficking molecules to infiltrate the CNS where they cause damage.The objective of this study was to investigate the involvement of coxsackie and adenovirus receptor-like membrane protein (CLMP) in the migration of immune cells into the CNS of patients with MS. METHODS: Expression of CLMP was measured in primary cultures of human brain endothelial cells (HBECs) and human meningeal endothelial cells (HMECs), postmortem brain samples, and peripheral blood mononuclear cells (PBMCs) from patients with MS and controls by RNA sequencing, quantitative PCR, immunohistochemistry, and flow cytometry. In vitro migration assays using HBECs and HMECs were performed to evaluate the function of CLMP. RESULTS: Using bulk RNA sequencing of primary cultures of human brain and meningeal endothelial cells (ECs), we have identified CLMP as a new potential cell trafficking molecule upregulated in inflammatory conditions. We first confirmed the upregulation of CLMP at the protein level on TNFα-activated and IFNγ-activated primary cultures of human brain and meningeal ECs. In autopsy brain specimens from patients with MS, we demonstrated an overexpression of endothelial CLMP in active MS lesions when compared with normal control brain tissue. Flow cytometry of human PBMCs demonstrated an increased frequency of CLMP+ B lymphocytes and monocytes in patients with MS, when compared with that in healthy controls. The use of a blocking antibody against CLMP reduced the migration of immune cells across the human brain and meningeal ECs in vitro. Finally, we found CLMP+ immune cell infiltrates in the perivascular area of parenchymal lesions and in the meninges of patients with MS. DISCUSSION: Collectively, our data demonstrate that CLMP is an adhesion molecule used by immune cells to access the CNS during neuroinflammatory disorders such as MS. CLMP could represent a target for a new treatment of neuroinflammatory conditions.


Subject(s)
Multiple Sclerosis , Humans , Brain/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Endothelial Cells/metabolism , Leukocytes/metabolism , Leukocytes, Mononuclear , Tumor Necrosis Factor-alpha/metabolism
19.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985970

ABSTRACT

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Animals , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/metabolism , Humans , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Natalizumab/metabolism , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuroinflammatory Diseases , T-Lymphocytes/metabolism , Th17 Cells
20.
Theranostics ; 11(1): 1-13, 2021.
Article in English | MEDLINE | ID: mdl-33391457

ABSTRACT

Background: Interleukin 37 (IL-37), a member of IL-1 family, broadly suppresses inflammation in many pathological conditions by acting as a dual-function cytokine in that IL-37 signals via the extracellular receptor complex IL1-R5/IL-1R8, but it can also translocate to the nucleus. However, whether IL-37 exerts beneficial actions in neuroinflammatory diseases, such as multiple sclerosis, remains to be elucidated. Thus, the goals of the present study were to evaluate the therapeutic effects of IL-37 in a mouse model of multiple sclerosis, and if so, whether this is mediated via the extracellular receptor complex IL-1R5/IL-1R8. Methods: We used a murine model of MS, the experimental autoimmune encephalomyelitis (EAE). We induced EAE in three different single and double transgenic mice (hIL-37tg, IL-1R8 KO, hIL-37tg-IL-1R8 KO) and wild type littermates. We also induced EAE in C57Bl/6 mice and treated them with various forms of recombinant human IL-37 protein. Functional and histological techniques were used to assess locomotor deficits and demyelination. Luminex and flow cytometry analysis were done to assess the protein levels of pro-inflammatory cytokines and different immune cell populations, respectively. qPCRs were done to assess the expression of IL-37, IL-1R5 and IL-1R8 in the spinal cord of EAE, and in blood peripheral mononuclear cells and brain tissue samples of MS patients. Results: We demonstrate that IL-37 reduces inflammation and protects against neurological deficits and myelin loss in EAE mice by acting via IL1-R5/IL1-R8. We also reveal that administration of recombinant human IL-37 exerts therapeutic actions in EAE mice. We finally show that IL-37 transcripts are not up-regulated in peripheral blood mononuclear cells and in brain lesions of MS patients, despite the IL-1R5/IL-1R8 receptor complex is expressed. Conclusions: This study presents novel data indicating that IL-37 exerts therapeutic effects in EAE by acting through the extracellular receptor complex IL-1R5/IL-1R8, and that this protective physiological mechanism is defective in MS individuals. IL-37 may therefore represent a novel therapeutic avenue for the treatment of MS with great promising potential.


Subject(s)
Brain/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Interleukin-1/genetics , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Relapsing-Remitting/genetics , Receptors, Interleukin-1/genetics , Spinal Cord/metabolism , Adult , Aged , Animals , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Humans , Inflammation , Interleukin-1/pharmacology , Male , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , Multiple Sclerosis, Chronic Progressive/metabolism , Multiple Sclerosis, Relapsing-Remitting/metabolism , Receptors, Interleukin-1/metabolism , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL