Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
J Virol ; : e0070124, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888345

ABSTRACT

Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female Aedes aegypti mosquitos feeding on naïve vs viremic mouse. While most transcripts (12,634) did not change their abundances, 360 transcripts showed decreases. Biological pathway analysis revealed representatives of the decreased transcripts involved in the wnt signaling pathway and hippo signaling pathway. One thousand three hundred fourteen transcripts showed increases in abundance and participate in 21 biological pathways including amino acid metabolism, carbon metabolism, fatty acid metabolism, and oxidative phosphorylation. Inhibition of oxidative phosphorylation with antimycin A reduced oxidative phosphorylation activity and ATP concentration associated with reduced DENV replication in the Aedes aegypti cells. Antimycin A did not affect the amounts of the non-structural proteins 3 and 5, two major components of the replication complex. Ribavirin, an agent that reduces GTP concentration, recapitulated the effects of reduced ATP concentration on DENV replication. Knocking down one of the oxidative phosphorylation components, ATP synthase subunit ß, reduced DENV replication in the mosquitos. In summary, our results suggest that DENV enhances metabolic pathways in the female Aedes aegypti mosquitos to supply nutrients and energy for virus replication. ATP synthase subunit ß knockdown might be exploited to reduce the mosquitos' competence to host and transmit DENV. IMPORTANCE: Through evolution, the mosquito-borne viruses have adapted to the blood-feeding behaviors of their opportunist hosts to fulfill a complete lifecycle in humans and mosquitos. Disruption in the mosquitos' ability to host these viruses offers strategies to prevent diseases caused by them. With the advent of genomic tools, we discovered that dengue virus (DENV) benefited from the female mosquitos' bloodmeals for metabolic and energetic supplies for replication. Chemical or genetic disruption in these supplies reduced DENV replication in the female mosquitos. Our discovery can be exploited to produce genetically modified mosquitos, in which DENV infection leads to disruption in the supplies and thereby reduces replication and transmission. Our discovery might be extrapolated to prevent mosquito-borne virus transmission and the diseases they cause.

2.
Mol Cell Biochem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782834

ABSTRACT

This study focused on miR-486-5p in atrial fibrillation (AF) evaluating its clinical significance and revealing its regulatory mechanism in cardiac fibroblasts, aiming to explore a novel biomarker for AF. The study enrolled 131 AF patients and 77 non-AF individuals. With the help of polymerase chain reaction (PCR), the expression of miR-486-5p was evaluated. The significance of miR-486-5p in the diagnosis of AF and the occurrence of left atrial fibrosis (LAF) was assessed by receiver operating curve (ROC) and logistic analyses. The regulatory effect and mechanism of miR-486-5p on cardiac fibrosis were investigated in human cardiac fibroblasts treated with angiotensin II. miR-486-5p was significantly upregulated in AF patients and discriminated AF patients from non-AF individuals. Increasing miR-486-5p showed a significant association with decreasing left ventricular ejection fraction (LVEF), increasing left atrial diameter (LAD) and left ventricular end-diastolic diameter (LVEDd), and the high incidence of LAF in AF patients. Moreover, miR-486-5p was identified as a risk factor for LAF and could distinguish AF patients with LAF and without LAF. In cardiac fibroblasts, angiotensin II induced the upregulation of miR-486-5p and promoted cell proliferation, migration, and collagen synthesis. miR-486-5p negatively regulated forkhead box O1 (FOXO1) and its knockdown could reverse the promoted effect of angiotensin II. FOXO1 alleviated the effect of miR-486-5p, and the miR-486-5p/FOXO1 could activate PI3K/Akt signaling. The activation of PI3K/Akt signaling alleviated the enhanced proliferation, migration, and collagen synthesis of cardiac fibroblasts induced by angiotensin II, and its inhibition showed opposite effects. Increased miR-486-5p served as a biomarker for the diagnosis and development prediction of AF. miR-486-5p regulated cardiac fibroblast viability and collagen synthesis via modulating the PI3K/Akt signaling through targeting FOXO1.

3.
EMBO Rep ; 23(12): e53552, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36250243

ABSTRACT

Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Autophagy/genetics , Protein Serine-Threonine Kinases , Drosophila Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972423

ABSTRACT

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.


Subject(s)
Caenorhabditis elegans Proteins/immunology , Caenorhabditis elegans/immunology , Immunity, Innate/immunology , Insulin/immunology , Intestines/immunology , Receptors, GABA-A/immunology , Synapses/immunology , Adult , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , GABAergic Neurons/immunology , GABAergic Neurons/metabolism , GABAergic Neurons/microbiology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Insulin/metabolism , Intestines/microbiology , Intestines/physiology , Mutation , Neuromuscular Junction/immunology , Neuromuscular Junction/microbiology , Neuromuscular Junction/physiology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/physiology , Receptors, GABA-A/genetics , Receptors, GABA-A/physiology , Signal Transduction/immunology , Synapses/microbiology , Synapses/physiology , Synaptic Transmission/genetics , Synaptic Transmission/immunology , Synaptic Transmission/physiology
5.
Int J Biometeorol ; 68(1): 133-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950095

ABSTRACT

Dengue is one of the world's most rapidly spreading mosquito-borne viral diseases. As it is found mostly in urban and semi-urban areas, urbanization and associated human activities that affect the environment and larval habitats could become risk factors (e.g., lane width, conditions of street ditches) for the spread of dengue. However, there are currently no systematic studies of micro-scale urbanization-based risk factors for the spread of dengue epidemics. We describe the study area, two micro-scale environmental risk factors associated with urbanization, and meteorological data. Since the observations involve spatial and temporal correlations, we also use some statistical methods for the analysis of spatial and spatial-temporal data for the relationship between urbanization and dengue. In this study, we analyzed data from Kaohsiung, a densely populated city in southern Taiwan, and found a positive correlation between environmental risk factors associated with urbanization (ditches positive for mosquito larvae and closely packed streets termed "dengue lanes") and clustering effects in dengue cases. The statistical analysis also revealed that the occurrence of positive ditches was significantly associated with that of dengue lanes in the study area. The relationship between climate variables and positive ditches was also analyzed in this paper, indicating a relationship between dengue and both rainfall and temperature, with temperature having a greater effect. Overall, this work is immediately relevant and applicable for policymakers in government, who will need to reduce these favorable habitats for vector-born disease spreaders and implement regulations for new urban constructions to thus reduce dengue spread in future outbreaks.


Subject(s)
Dengue , Epidemics , Animals , Humans , Urbanization , Dengue/epidemiology , Cities/epidemiology , Risk Factors , Larva
6.
Nano Lett ; 23(17): 7906-7913, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37619971

ABSTRACT

A recent study of liquid sulfur produced in an electrochemical cell has prompted further investigation into regulating Li-S oxidation chemistry. In this research, we examined the liquid-to-solid sulfur transition dynamics by visually observing the electrochemical generation of sulfur on a graphene-based substrate. We investigated the charging of polysulfides at various current densities and discovered a quantitative correlation between the size and number density of liquid sulfur droplets and the applied current. However, the areal capacities exhibited less sensitivity. This observation offers valuable insights for designing fast-charging sulfur cathodes. By incorporating liquid sulfur into Li-S batteries with a high sulfur loading of 4.2 mg cm-2, the capacity retention can reach ∼100%, even when increasing the rate from 0.1 to 3 C. This study contributes to a better understanding of the kinetics involved in the liquid-solid sulfur growth in Li-S chemistry and presents viable strategies for optimizing fast-charging operations.

7.
BMC Plant Biol ; 23(1): 590, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008766

ABSTRACT

BACKGROUND: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS: YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS: This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.


Subject(s)
Basidiomycota , Triticum , Chromosome Mapping , Triticum/genetics , Disease Resistance/genetics , Australia , Nucleotides , Plant Diseases/genetics , Basidiomycota/genetics
8.
PLoS Pathog ; 17(3): e1009480, 2021 03.
Article in English | MEDLINE | ID: mdl-33784371

ABSTRACT

Dengue virus (DENV) causes dengue fever and severe hemorrhagic fever in humans and is primarily transmitted by Aedes aegypti and A. albopictus mosquitoes. The incidence of DENV infection has been gradually increasing in recent years due to global urbanization and international travel. Understanding the virulence determinants in host and vector transmissibility of emerging epidemic DENV will be critical to combat potential outbreaks. The DENV serotype 2 (DENV-2), which caused a widespread outbreak in Taiwan in 2015 (TW2015), is of the Cosmopolitan genotype and is phylogenetically related to the virus strain linked to another large outbreak in Indonesia in 2015. We found that the TW2015 virus was highly virulent in type I and type II interferon-deficient mice, with robust replication in spleen, lung, and intestine. The TW2015 virus also had high transmissibility to Aedes mosquitoes and could be effectively spread in a continuous mosquitoes-mouse-mosquitoes-mouse transmission cycle. By making 16681-based mutants carrying different segments of the TW2015 virus, we identified the structural pre-membrane (prM) and envelope (E) genes as key virulence determinants in the host, with involvement in the high transmissibility of the TW2015 virus in mosquitoes. The transmission mouse model will make a useful platform for evaluation of DENV with high epidemic potential and development of new strategies against dengue outbreaks.


Subject(s)
Culicidae/virology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Dengue/virology , Insect Vectors/virology , Virulence/physiology , Animals , Disease Models, Animal , Genotype , Mice
9.
Theor Appl Genet ; 137(1): 1, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071267

ABSTRACT

KEY MESSAGE: Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Chromosome Mapping , Disease Resistance/genetics , Australia , Plant Breeding , Plant Diseases/genetics
10.
J Biomed Sci ; 30(1): 12, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36803804

ABSTRACT

BACKGROUND: Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS: C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS: Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS: Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.


Subject(s)
Orchitis , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Semen/metabolism , Mice, Knockout , Inflammation/genetics , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
11.
Epilepsia ; 64(10): 2667-2678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37522416

ABSTRACT

OBJECTIVE: Bone metabolism can be influenced by a range of factors. We selected children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and lifestyles similar to those of healthy children to control for the confounding factors that may influence bone metabolism. We aimed to identify the specific effects of epilepsy and/or anti-seizure medications (ASMs) on bone metabolism. METHODS: Patients with SeLECTS were divided into an untreated group and a monotherapy group, and the third group was a healthy control group. We determined the levels of various biochemical markers of bone metabolism, including procollagen type I nitrogenous propeptide (PINP), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I cross-linked C-telopeptide (CTX), calcium, magnesium, phosphorus, parathyroid hormone (PTH), and vitamin D3 (VD3 ). RESULTS: A total of 1487 patients (from 19 centers) were diagnosed with SeLECTS; 1032 were analyzed, including 117 patients who did not receive any ASMs (untreated group), 643 patients who received only one ASM (monotherapy group), and 272 children in the healthy control group. Except for VD3 , other bone metabolism of the three groups were different (p < .001). Bone metabolism was significantly lower in the untreated group than the healthy control group (p < .05). There were significant differences between the monotherapy and healthy control group in the level of many markers. However, when comparing the monotherapy and untreated groups, the results were different; oxcarbazepine, levetiracetam, and topiramate had no significant effect on bone metabolism. Phosphorus and magnesium were significantly lower in the valproic acid group than the untreated group (adjusted p < .05, Cliff's delta .282-.768). CTX was significantly higher in the lamotrigine group than in the untreated group (adjusted p = .012, Cliff's delta = .316). SIGNIFICANCE: Epilepsy can affect many aspects of bone metabolism. After controlling epilepsy and other confounders that affect bone metabolism, we found that the effects of ASMs on bone metabolism differed. Oxcarbazepine, levetiracetam, and topiramate did not affect bone metabolism, and lamotrigine corrected some of the abnormal markers of bone metabolism in patients with epilepsy.

12.
BMC Infect Dis ; 23(1): 301, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158835

ABSTRACT

BACKGROUND: Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. Currently Dengvaxia, the first dengue vaccine licensed in 20 countries, was recommended for DENV seropositive individuals aged 9-45 years. Studying dengue seroprevalence can improve our understanding of the epidemiology and transmission dynamics of DENV, and facilitate future intervention strategies and assessment of vaccine efficacy. Several DENV envelope protein-based serological tests including IgG and IgG-capture enzyme-linked immunosorbent assays (ELISAs) have been employed in seroprevalence studies. Previously DENV IgG-capture ELISA was reported to distinguish primary and secondary DENV infections during early convalescence, however, its performance over time and in seroprevalence study remains understudied. METHODS: In this study, we used well-documented neutralization test- or reverse-transcription-polymerase-chain reaction-confirmed serum/plasma samples including DENV-naïve, primary and secondary DENV, primary West Nile virus, primary Zika virus, and Zika with previous DENV infection panels to compare the performance of three ELISAs. RESULTS: The sensitivity of the InBios IgG ELISA was higher than that of InBios IgG-capture and SD IgG-capture ELISAs. The sensitivity of IgG-capture ELISAs was higher for secondary than primary DENV infection panel. Within the secondary DENV infection panel, the sensitivity of InBios IgG-capture ELISA decreased from 77.8% at < 6 months to 41.7% at 1-1.5 years, 28.6% at 2-15 years and 0% at > 20 years (p < 0.001, Cochran-Armitage test for trend), whereas that of IgG ELISA remains 100%. A similar trend was observed for SD IgG-capture ELISA. CONCLUSIONS: Our findings demonstrate higher sensitivity of DENV IgG ELISA than IgG-capture ELISA in seroprevalence study and interpretation of DENV IgG-capture ELISA should take sampling time and primary or secondary DENV infection into consideration.


Subject(s)
Dengue Virus , Zika Virus Infection , Zika Virus , Humans , Seroepidemiologic Studies , Enzyme-Linked Immunosorbent Assay , Neutralization Tests , Immunoglobulin G
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 923-928, 2023.
Article in Zh | MEDLINE | ID: mdl-37718397

ABSTRACT

OBJECTIVES: To investigate the electroencephalogram (EEG) characteristics and progression of febrile infection-related epilepsy syndrome (FIRES) in children, aiming to enhance diagnosis and treatment approaches. METHODS: A retrospective analysis was conducted on 26 children with FIRES between May 2017 and December 2021. RESULTS: All 26 children (100%) presented with fever at the onset, followed by frequent convulsions that rapidly progressed into convulsive status. Ventilator support was required for 22 cases (85%). During the acute phase, EEG features demonstrated the disappearance of background activity and physiological sleep cycles in all children. Diffuse slow waves and multifocal slow spike slow waves were observed as abnormal waves during the interictal period. A characteristic pattern of focal low amplitude fast wave initiation was detected in all children during seizure episodes. In the chronic phase, the background EEG activity gradually recovered, and the presence of abnormal waves was relatively limited. The characteristic pattern of focal slow wave rhythm initiation was evident during seizure episodes. Additionally, extreme δ brushes were observed in four cases (15%). CONCLUSIONS: These findings suggest that EEG manifestations in children with FIRES exhibit distinctive patterns during the acute and chronic stages, providing significant value for early diagnosis and clinical staging. Extreme δ brushes may be one of the distinctive markers of children with FIRES.

14.
Small ; 18(14): e2107853, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35388645

ABSTRACT

Ca-ion batteries (CIBs) have been considered a promising candidate for the next-generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+ /Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)-typed Na-vacant Na1 V2 (PO4 )2 F3 (N1 PVF3 ) with sufficient interstitial spaces is reported as ultra-stable and high-energy Ca ion cathodes. The N1 PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g-1 at 10 and 500 mA g-1 , respectively, and a record-long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1 PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+ /Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1 VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg-1 , representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high-power capabilities for N1 PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.

16.
PLoS Pathog ; 16(1): e1008103, 2020 01.
Article in English | MEDLINE | ID: mdl-31945137

ABSTRACT

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.


Subject(s)
Aedes/genetics , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Dengue Virus/immunology , Aedes/virology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/genetics , Female , Humans , Male , Protein Engineering , Single-Chain Antibodies/genetics
17.
New Phytol ; 234(2): 592-606, 2022 04.
Article in English | MEDLINE | ID: mdl-35107838

ABSTRACT

Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.


Subject(s)
Basidiomycota , Disease Resistance , Basidiomycota/physiology , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
18.
Theor Appl Genet ; 135(5): 1541-1550, 2022 May.
Article in English | MEDLINE | ID: mdl-35199199

ABSTRACT

KEY MESSAGE: Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.


Subject(s)
Basidiomycota , Triticum , Australia , Basidiomycota/physiology , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Plant Stems/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics
19.
Epilepsy Behav ; 135: 108819, 2022 10.
Article in English | MEDLINE | ID: mdl-35835716

ABSTRACT

Previous studies have demonstrated that language impairments are frequently observed in patients with benign epilepsy with centrotemporal spikes (BECTS). However, how BECTS affects language processing in the Chinese population remains unclear. With the use of functional magnetic resonance imaging (fMRI) in an overt picture-naming task, the present study examined functional connectivity in 27 children with BECTS and 26 healthy controls. The results indicated that children with BECTS showed altered functional connectivity associated with speech production between the left precuneus and the right cerebellum, between the right precuneus and the bilateral thalamus and the left superior temporal gyrus, between the right cuneus and the right postcentral gyrus and the right inferior parietal lobule, and between the right cerebellum and right middle frontal gyrus. Collectively, the findings in this study demonstrate the abnormal functional connectivity basis of speech production in Chinese children with BECTS, providing clues to understanding the brain mechanisms of language-related network in patients with BECTS.


Subject(s)
Epilepsy, Rolandic , Brain Mapping/methods , Child , China , Epilepsy, Rolandic/complications , Epilepsy, Rolandic/diagnostic imaging , Humans , Language , Magnetic Resonance Imaging/methods , Speech
20.
Proc Natl Acad Sci U S A ; 116(49): 24651-24661, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31666321

ABSTRACT

Secreted exosomal microRNAs (miRNAs) mediate interorgan/tissue communications by modulating target gene expression, thereby regulating developmental and physiological functions. However, the source, route, and function in target cells have not been formally established for specific miRNAs. Here, we show that glial miR-274 non-cell-autonomously modulates the growth of synaptic boutons and tracheal branches. Whereas the precursor form of miR-274 is expressed in glia, the mature form of miR-274 distributes broadly, including in synaptic boutons, muscle cells, and tracheal cells. Mature miR-274 is secreted from glia to the circulating hemolymph as an exosomal cargo, a process requiring ESCRT components in exosome biogenesis and Rab11 and Syx1A in exosome release. We further show that miR-274 can function in the neurons or tracheal cells to modulate the growth of synaptic boutons and tracheal branches, respectively. Also, miR-274 uptake into the target cells by AP-2-dependent mechanisms modulates target cell growth. In the target cells, miR-274 down-regulates Sprouty (Sty) through a targeting sequence at the sty 3' untranslated region, thereby enhancing MAPK signaling and promoting cell growth. miR-274 expressed in glia of an mir-274 null mutant is released as an exosomal cargo in the circulating hemolymph, and such glial-specific expression resets normal levels of Sty and MAPK signaling and modulates target cell growth. mir-274 mutant larvae are hypersensitive to hypoxia, which is suppressed by miR-274 expression in glia or by increasing tracheal branches. Thus, glia-derived miR-274 coordinates growth of synaptic boutons and tracheal branches to modulate larval hypoxia responses.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Gene Expression Regulation, Developmental/physiology , Membrane Proteins/genetics , MicroRNAs/metabolism , Neuroglia/metabolism , 3' Untranslated Regions/genetics , Animals , Animals, Genetically Modified , Cell Hypoxia/genetics , Down-Regulation , Exosomes/metabolism , Female , Hemolymph/metabolism , Larva/growth & development , Larva/metabolism , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , Mutation , Presynaptic Terminals/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Trachea/growth & development , Trachea/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL