Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968109

ABSTRACT

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1 , Trophoblasts , Trophoblasts/metabolism , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Female , Pregnancy , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Placenta/metabolism , Signal Transduction , Autophagy/physiology
2.
Nature ; 571(7766): 505-509, 2019 07.
Article in English | MEDLINE | ID: mdl-31243369

ABSTRACT

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Subject(s)
Gene Expression Regulation, Developmental , Organogenesis/genetics , Transcriptome/genetics , Animals , Biological Evolution , Chickens/genetics , Female , Humans , Macaca mulatta/genetics , Male , Mice , Opossums/genetics , Rabbits , Rats
3.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37494289

ABSTRACT

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Subject(s)
Brain , Primates , Mice , Humans , Animals , Primates/genetics , Brain/metabolism , Evolution, Molecular
4.
J Bioenerg Biomembr ; 56(4): 451-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833042

ABSTRACT

Numerous studies have indicated that N6-methyladenosine (m6A) and lncRNAs play pivotal roles in human cancer. However, the underlying functions and mechanisms of m6A-lncRNA in the physiological processes of breast cancer remain unclear. Here, we found that DSCAM-AS1 is an m6A-modified lncRNA that was overexpressed in breast cancer tissues and cells, indicating poor clinical prognosis. Gain/loss functional assays suggested that DSCAM-AS1 inhibited erastin-induced ferroptosis in breast cancer cells. Mechanistically, there were remarkable m6A modification sites on both the 3'-UTR of DSCAM-AS1 and the endogenous antioxidant factor SLC7A11. M6A methyltransferase methyltransferase-like 3 (METTL3) methylated both SLC7A11 and DSCAM-AS1. Moreover, DSCAM-AS1 recognized m6A sites on the SLC7A11 mRNA, thereby enhancing its stability. Taken together, these findings indicated a potential therapeutic strategy for breast cancer ferroptosis in an m6A-dependent manner.


Subject(s)
Breast Neoplasms , Ferroptosis , Methyltransferases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ferroptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Methyltransferases/metabolism , Methyltransferases/genetics , Cell Line, Tumor , Animals , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Mice , Disease Progression
5.
Opt Lett ; 49(12): 3356-3359, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875619

ABSTRACT

Mueller matrix microscopy can provide comprehensive polarization-related optical and structural information of biomedical samples label-freely. Thus, it is regarded as an emerging powerful tool for pathological diagnosis. However, the staining dyes have different optical properties and staining mechanisms, which can put influence on Mueller matrix microscopic measurement. In this Letter, we quantitatively analyze the polarization enhancement mechanism from hematoxylin and eosin (H&E) staining in multispectral Mueller matrix microscopy. We examine the influence of hematoxylin and eosin dyes on Mueller matrix-derived polarization characteristics of fibrous tissue structures. Combined with Monte Carlo simulations, we explain how the dyes enhance diattenuation and linear retardance as the illumination wavelength changed. In addition, it is demonstrated that by choosing an appropriate incident wavelength, more visual Mueller matrix polarimetric information can be observed of the H&E stained tissue sample. The findings can lay the foundation for the future Mueller matrix-assisted digital pathology.


Subject(s)
Staining and Labeling , Microscopy, Polarization/methods , Eosine Yellowish-(YS)/chemistry , Monte Carlo Method , Hematoxylin , Humans
6.
Haematologica ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934064

ABSTRACT

To evaluate the efficacy and safety of flumatinib in the later-line treatment of Chinese patients with Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia (CP-CML previously treated with tyrosine kinase inhibitors (TKIs). Patients with CML-CP were evaluated for the probabilities of responses including complete hematologic response (CHR), cytogenetic response, and molecular response (MR) and adverse events (AEs) after the later-line flumatinib therapy. Of 336 enrolled patients with median age 50 years, median duration of treatment with flumatinib was 11.04 (2-25.23) months. Patients who achieved clinical responses at baseline showed maintenance of CHR, complete cytogenetic response (CCyR)/2-log molecular response (MR2), major molecular response (MMR), and 4-log molecular response or deep molecular response (MR4/DMR) in 100%, 98.9%, 98.6%, and 92.9% patients, respectively. CHR, CCyR/MR2, MMR, and MR4/DMR responses were achieved in 86.4%, 52.7%, 49.6%, and 23.5% patients respectively, which showed the lack of respective clinical responses at baseline. The patients without response at baseline, treated with flumatinib as 2L TKI, having no resistance to prior TKI or only resistance to imatinib, with response to last TKI, and with BCR::ABL ≤10% had higher CCyR/MR2, MMR, or MR4/DMR. The AEs observed during the later-line flumatinib treatment were tolerable and consistent with those reported with the first-line therapy. Flumatinib was effective and safe in patients who are resistant or intolerant to other TKIs. In particular, 2L flumatinib treatment induced high response rates and was more beneficial to patients without previous 2G TKI resistance, thus serving as a probable treatment option for these patients.

7.
Phys Chem Chem Phys ; 26(12): 9517-9523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38450673

ABSTRACT

3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a novel energetic material with an excellent performance and has attracted considerable attention. Motivated by recent theories and experiments, we had carried out experimental and theoretical studies on the high-pressure responses of vibrational characteristics, in conjunction with structural and electronic characteristics. It is found that all observed infrared spectra peaks seem to shift towards higher frequencies. And the peaks attributed to N-Oc (coordinated oxygen atom) stretching vibrations become broader due to the decrease of lattice constants and the free region of DNTF crystals with the increase of pressure, where the a-direction is more sensitive to pressure. In addition, the non-covalent interaction between adjacent DNTF molecules in the same layer changes from the van der Waals interaction to the steric effect with the increase of pressure, and that between layers also changes from the van der Waals interaction to the π-π stacking interaction. More importantly, these results highlight that the increase of pressure may lead to the stability decrease and impact the sensitivity increase of DNTF. This study can deepen the understanding of the energetic material DNTF under high pressure and is of great significance for blasting and detonation applications of DNTF.

8.
J Asthma ; 61(8): 889-893, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38294679

ABSTRACT

BACKGROUND: Fatal asthma is a rapidly progressing and highly fatal form of asthma. Mechanical ventilation, although necessary for respiratory support, can exacerbate the condition and lead to ventilator-associated lung injury. ECMO therapy is crucial in allowing the lungs to rest and recover, as it provides extracorporeal membrane oxygenation. CASE PRESENTATION: A 40-year-old man presented with dyspnea following a mountain climb, which rapidly worsened, leading to respiratory failure and loss of consciousness. Despite drug therapy and mechanical ventilation, arterial blood gas analysis showed persistent hypercapnia. After 3 days of ECMO support, the patient was successfully extubated and underwent treatment for Aspergillus infection. Chest CT returned to normal after 3 months of anti-aspergillus therapy. CONCLUSION: When drug therapy and mechanical ventilation fail to improve respiratory failure in fatal asthma, prompt initiation of ECMO support is essential to create opportunities for subsequent etiological treatment.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Asthma , Extracorporeal Membrane Oxygenation , Humans , Male , Adult , Asthma/complications , Aspergillosis, Allergic Bronchopulmonary/diagnosis , Aspergillosis, Allergic Bronchopulmonary/therapy , Antifungal Agents/therapeutic use
9.
BMC Psychiatry ; 24(1): 26, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178028

ABSTRACT

BACKGROUND: In recent years, mobile psychological interventions have proven effective in reducing self-injury and suicide-related behaviors. Therefore, it is essential to continually enhance the user experience and address patients' needs to facilitate the development of mobile mental health interventions. Identifying patients with mobile mental health needs can be challenging for mental health professionals. To address this, we conducted a systematic review of qualitative research to synthesize the needs of patients engaged in self-injury and suicide-related behaviors for mobile and internet-based psychological interventions. METHODS: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) and the Enhancing Transparency in Reporting the Synthesis of Qualitative Research statement (ENTREQ). We explored 11 databases and synthesized the results using thematic analysis. RESULTS: Sixteen qualitative and mixed-method studies were included. The study found that the needs of patients with self-injury and suicide-related behaviors for mobile psychological intervention included therapy, technology, culture, privacy, communication, emotional support, personalization, and self-management. Consistent with the Technology Acceptance Model (TAM), the needs of patients with self-injury and suicide-related behaviors are influenced by the perceived ease of use and perceived usefulness of the mobile intervention. However, the findings also highlight the importance and unmet needs of peer support, communication, self-management, and empowerment in using mobile psychological interventions for patients with self-injury and suicide-related behaviors. CONCLUSIONS: Studies in this area have shown that the needs of patients with self-harm and suicide-related behaviors cover multiple stages, including basic therapeutic and technical needs and advanced emotional needs. This complexity makes it challenging to address the needs of patients engaged in self-injury and suicide-related behaviors through digital interventions. In the future, mental health professionals should be encouraged to participate in multidisciplinary collaborations to expand the use of digital interventions, enhancing remote self-management for patients and providing new strategies for the ongoing care of psychiatric patients. We registered the review protocol on PROSPERO (CRD42022324958).


Subject(s)
Psychosocial Intervention , Self-Injurious Behavior , Humans , Internet , Mental Health , Self-Injurious Behavior/therapy , Suicidal Ideation , Qualitative Research
10.
PLoS Genet ; 17(7): e1009654, 2021 07.
Article in English | MEDLINE | ID: mdl-34242211

ABSTRACT

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Subject(s)
Evolution, Molecular , Gene Duplication/genetics , Genes, Essential/genetics , Animals , Biological Evolution , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Knockdown Techniques/methods , Genomics , Genotype , Models, Genetic , Mutation , Phenotype , Phylogeny , Reproducibility of Results
11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753478

ABSTRACT

Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai-Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.


Subject(s)
Acclimatization/genetics , Body Size/genetics , Mutation Rate , Selection, Genetic , Altitude , Amino Acid Substitution , Animals , DNA Repair , Nuclear Proteins/genetics , Phylogeny , Species Specificity , Tibet
12.
PLoS Med ; 20(6): e1004249, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37384596

ABSTRACT

BACKGROUND: Polymyalgia rheumatica (PMR) is a common inflammatory disease in elderly persons whose mechanism of pathogenesis has not been elucidated. Glucocorticoids are the main first-line treatments but result in numerous side effects. Therefore, there is a need to explore pathogenetic factors and identify possible glucocorticoid-sparing agents. We aimed to study the pathogenetic features of the disease and assess the efficacy and safety of Janus tyrosine kinase (JAK)-inhibitor tofacitinib in patients with PMR. METHODS AND FINDINGS: We recruited treatment-naïve PMR patients from the First Affiliated Hospital, Zhejiang University School of Medicine, between September 2020 and September 2022. In the first cohort, we found that the gene expression patterns of peripheral blood mononuclear cells (PBMCs) in 11 patients (10 female, 1 male, age 68.0 ± 8.3) with newly diagnosed PMR were significantly different from 20 healthy controls (17 female, 3 male, age 63.7 ± 9.8) by RNA sequencing. Inflammatory response and cytokine-cytokine receptor interaction were the most notable pathways affected. We observed marked increases in expression of IL6R, IL1B, IL1R1, JAK2, TLR2, TLR4, TLR8, CCR1, CR1, S100A8, S100A12, and IL17RA, which could trigger JAK signaling. Furthermore, tofacitinib suppressed the IL-6R and JAK2 expression of CD4+T cells from patients with PMR in vitro. In the second cohort, patients with PMR were randomized and treated with tofacitinib or glucocorticoids (1/1) for 24 weeks. All PMR patients underwent clinical and laboratory examinations at 0, 4, 8, 12, 16, 20, and 24 weeks, and PMR activity disease scores (PMR-AS) were calculated. The primary endpoint was the proportion of patients with PMR-AS ≤10 at weeks 12 and 24. Secondary endpoints: PMR-AS score, c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) at weeks 12 and 24. Thirty-nine patients with newly diagnosed PMR received tofacitinib, and 37 patients received glucocorticoid. Thirty-five patients (29 female, 6 male, age 64.4 ± 8.4) and 32 patients (23 female, 9 male, age 65.3 ± 8.7) patients completed the 24-week intervention, respectively. There were no statistically significant differences in primary or secondary outcomes. At weeks 12 and 24, all patients in both groups had PMR-AS <10. PMR-AS, CRP, and ESR were all significantly decreased in both groups. No severe adverse events were observed in either group. Study limitations included the single-center study design with a short observation period. CONCLUSIONS: We found that JAK signaling was involved in the pathogenesis of PMR. Tofacitinib effectively treated patients with PMR as glucocorticoid does in this randomized, monocenter, open-label, controlled trial (ChiCTR2000038253). TRIAL REGISTRATION: This investigator-initiated clinical trial (IIT) had been registered on the website (http://www.chictr.org.cn/, ChiCTR2000038253).


Subject(s)
Polymyalgia Rheumatica , Aged , Humans , Female , Male , Middle Aged , Polymyalgia Rheumatica/drug therapy , Glucocorticoids , Leukocytes, Mononuclear , Piperidines/adverse effects , C-Reactive Protein
13.
Br J Haematol ; 202(6): 1178-1191, 2023 09.
Article in English | MEDLINE | ID: mdl-37469124

ABSTRACT

Although tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukaemia (CML), TKI resistance remains a major challenge. Here, we demonstrated that plant homeodomain finger protein 8 (PHF8), a histone demethylase was aberrantly enriched in CML samples compared to healthy controls. PHF8 inhibited CML cell differentiation and promoted CML cell proliferation. Furthermore, the proliferation-inhibited function of PHF8-knockdown have stronger effect on imatinib mesylate (IM)-resistant CML cells. Mechanistically, we identified that PHF8 as a transcriptional modulator interacted with the promoter of the BCR::ABL1 fusion gene and alters the methylation levels of H3K9me1, H3K9me2 and H3K27me1, thereby promoting BCR::ABL1 transcription. Overall, our study suggests that targeting PHF8, which directly regulates BCR::ABL1 expression, is a useful therapeutic approach for CML.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Apoptosis , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/metabolism , Histone Demethylases/genetics , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Transcription Factors/genetics
14.
Anal Chem ; 95(48): 17691-17698, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37978911

ABSTRACT

Detection of the virus is the primary factor to discover and block the occurrence and development of the virus epidemic. Here, an ultrasensitive paper-based virus molecular imprinting sensor is developed to detect two viruses simultaneously in which the detection limit of the influenza virus (H5N1) is 16.0 aM (9.63 × 103 particles/mL) while that of the Hepatitis B Virus (HBV) is 129 fM (7.77 × 107 particles/mL). This paper-based sensor is low cost and is easy to cut, store, and carry. In addition, the visual semiquantitative detection of two viruses is achieved by using two aptamer-functionalized persistent luminescent nanoparticles as signal probes. These probes and the imprinted cavities on the paper-based material formed sandwich-type double recognition of the target viruses. This sensor has extremely high sensitivity to the H5N1 virus, which is of great value to solve the influenza epidemic with the most outbreaks in history, and also opens up a new way for the prevention and control of other virus epidemics. This cheap and portable visual sensor provides the possibility for self-service detection and can greatly reduce the pressure on medical staff and reduce the risk of virus infection caused by the concentration of people to be tested.


Subject(s)
Biosensing Techniques , Influenza A Virus, H5N1 Subtype , Influenza, Human , Molecular Imprinting , Nanoparticles , Humans , Limit of Detection , Influenza, Human/diagnosis , Hepatitis B virus , Electrochemical Techniques
15.
BMC Plant Biol ; 23(1): 451, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37749497

ABSTRACT

BACKGROUND: Drought resistance is a complex characteristic closely related to the severity and duration of stress. Perennial ryegrass (Lolium perenne L.) has no distinct drought tolerance but often encounters drought stress seasonally. Although the response of perennial ryegrass to either extreme or moderate drought stress has been investigated, a comprehensive understanding of perennial ryegrass response to both conditions of drought stress is currently lacking. RESULTS: In this study, we investigated the genetic variation in drought resistance in 18 perennial ryegrass varieties under both extreme and moderate drought conditions. The performance of these varieties exhibited obvious diversity, and the survival of perennial ryegrass under severe stress was not equal to good growth under moderate drought stress. 'Sopin', with superior performance under both stress conditions, was the best-performing variety. Transcriptome, physiological, and molecular analyses revealed that 'Sopin' adapted to drought stress through multiple sophisticated mechanisms. Under stress conditions, starch and sugar metabolic enzymes were highly expressed, while CslA was expressed at low levels in 'Sopin', promoting starch degradation and soluble sugar accumulation. The expression and activity of superoxide dismutase were significantly higher in 'Sopin', while the activity of peroxidase was lower, allowing for 'Sopin' to maintain a better balance between maintaining ROS signal transduction and alleviating oxidative damage. Furthermore, drought stress-related transcriptional and posttranscriptional regulatory mechanisms, including the upregulation of transcription factors, kinases, and E3 ubiquitin ligases, facilitate abscisic acid and stress signal transduction. CONCLUSION: Our study provides insights into the resistance of perennial ryegrass to both extreme and moderate droughts and the underlying mechanisms by which perennial ryegrass adapts to drought conditions.


Subject(s)
Drought Resistance , Lolium , Lolium/genetics , Droughts , Sugars , Genetic Variation
16.
J Transl Med ; 21(1): 793, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940996

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine characterized by a compromised intestinal epithelial barrier. Mucin glycans are crucial in preserving barrier function during bacterial infections, although the underlying mechanisms remain largely unexplored. METHODS: A cohort comprising 15 patients diagnosed with UC and 15 healthy individuals was recruited. Stool samples were collected to perform 16S rRNA gene sequencing, while biopsy samples were subjected to nanocapillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to assess O-glycosylation. Gene expression was evaluated through qPCR analysis and Western blotting. Furthermore, animal experiments were conducted to investigate the effects of Escherichia coli and/or O-glycan inhibitor benzyl-α-GalNAc on the development of colitis in mice. RESULTS: Our findings revealed that the mucus barrier was disrupted during the early stages of UC, while the MUC2 protein content remained unaltered. Additionally, a noteworthy reduction in the O-glycosylation of MUC2 was observed, along with significant changes in the intestinal microbiota during the early stages of UC. These changes included a decrease in intestinal species richness and an increase in the abundance of Escherichia coli (E. coli). Moreover, subsequent to the administration of galactose or O-glycan inhibitor to intestinal epithelial cells, it was observed that the cell culture supernatant had the ability to modify the proliferation and adhesive capacity of E. coli. Furthermore, when pathogenic E. coli or commensal E. coli were cocultured with intestinal epithelium, both strains elicited activation of the NF-KB signaling pathway in epithelial cells and facilitated the expression of serine protease in comparison to the untreated control. Consistently, the inhibition of O-glycans has been observed to enhance the pathogenicity of E. coli in vivo. Furthermore, a correlation has been established between the level of O-glycans and the development of ulcerative colitis. Specifically, a reduction in the O-glycan content of MUC2 cells has been found to increase the virulence of E. coli, thereby compromising the integrity of the intestinal epithelial barrier. CONCLUSIONS: Together, there exist complex interactions between the intestinal epithelium, O-glycans, and the intestinal microbiota, which may inform the development of novel therapeutic strategies for the treatment of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Enteropathogenic Escherichia coli , Humans , Mice , Animals , Colitis, Ulcerative/pathology , Mucins/metabolism , NF-kappa B/metabolism , Enteropathogenic Escherichia coli/metabolism , Glycosylation , RNA, Ribosomal, 16S/metabolism , Tandem Mass Spectrometry , Colitis/pathology , Intestinal Mucosa/pathology , Polysaccharides/metabolism , Signal Transduction , Dextran Sulfate/metabolism , Disease Models, Animal , Colon/pathology
17.
Acc Chem Res ; 55(3): 286-297, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35025201

ABSTRACT

Because of the deterioration of global water quality, the occurrence of chemical and microbial contaminants in water raises serious concerns for the health of the population. Identifying and developing effective and environmentally friendly water treatment technologies are critical to obtain clean water. Among the various technologies for the purification of water, ultraviolet photolysis of chlorine (UV/chlorine), an emerging advanced oxidation process (AOP), has multiple functions for the control of contaminants via the production of hydroxyl radicals (HO·) and reactive chlorine species (RCS), such as Cl·, ClO·, and Cl2·-.This Account centers around the radical chemistry of RCS and HO· in different water matrices and their roles and mechanisms in the abatement of contaminants. The concentrations of Cl·, ClO·, and Cl2·- are comparable to or higher than those of HO· (10-14 to 10-13 M). The reactivities of RCS are more selective than HO· with a broader range of second-order rate constants (k). The k values of Cl· toward most aromatics are higher or similar as compared to those of HO·, while those of Cl2·- and ClO· are less reactive but more selective toward aromatics containing electron-donating functional groups. Their major reaction mechanisms with Cl· are electron transfer and addition, while those with ClO· and Cl2·- primarily involve electron transfer. As for aliphatics, their reactivities with both HO· and RCS are much lower than those of aromatics. The reaction mechanisms for most of them with Cl· and Cl2·- are hydrogen abstraction, except for olefins, which are addition. In addition, RCS greatly contribute to the inactivation of microbial contaminants.Toward future application, the UV/chlorine process has both pros and cons. Compared with the traditional HO·-based AOP of UV/H2O2, UV/chlorine is more efficient and energy-saving for oxidation and disinfection, and its efficiency is less affected by water matrix components. However, the formation of toxic byproducts in UV/chlorine limits its application scenarios. In dissolved organic matter (DOM)-rich water, the formation of halogenated byproducts is enhanced in UV/chlorine. In the presence of ammonia, reactive nitrogen species (RNS) (e.g., ·NO and ·NO2) are involved, and highly toxic nitro(so) products such as nitro(so)-phenolics and N-nitrosodimethylamine are generated. For a niche application, the UV/chlorine process is recommended to be utilized in water with low levels of DOM and ammonia.Strategies should be developed to make full use of highly reactive species (RCS and HO·) for the abatement of target contaminants and to reduce the formation of toxic byproducts. For example, the UV/chlorine process can be used in tandem with other treatments to create multiple barriers for the production of safe water. In addition, halogen radicals are very important in ecosystems as well as other areas such as medical therapy and organic synthesis. UV/chlorine is the most efficient homogeneous system to generate halogen radicals, and thus it provides a perfect system to investigate the fates of halogen radicals for interdisciplinary research.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Ecosystem , Hydrogen Peroxide , Kinetics , Oxidation-Reduction , Ultraviolet Rays , Water Pollutants, Chemical/analysis
18.
Eur J Nucl Med Mol Imaging ; 50(3): 881-891, 2023 02.
Article in English | MEDLINE | ID: mdl-36301324

ABSTRACT

PURPOSE: To compare PET/CT, MRI and ultrasonography in detecting recurrence of nasopharyngeal carcinoma and identify their benefit in staging, contouring and overall survival (OS). METHODS: Cohort A included 1453 patients with or without histopathology-confirmed local recurrence, while cohort B consisted of 316 patients with 606 histopathology-confirmed lymph nodes to compare the sensitivities and specificities of PET/CT, MRI and ultrasonography using McNemar test. Cohorts C and D consisted of 273 patients from cohort A and 267 patients from cohort B, respectively, to compare the distribution of PET/CT-based and MRI-based rT-stage and rN-stage and the accuracy of rN-stage using McNemar test. Cohort E included 30 random patients from cohort A to evaluate the changes in contouring with or without PET/CT by related-samples T test or Wilcoxon rank test. The OS of 61 rT3-4N0M0 patients staged by PET/CT plus MRI (cohort F) and 67 MRI-staged rT3-4N0M0 patients (cohort G) who underwent similar salvage treatment were compared by log-rank test and Cox regression. RESULTS: PET/CT had similar specificity to MRI but higher sensitivity (93.9% vs. 79.3%, P < 0.001) in detecting local recurrence. PET/CT, MRI and ultrasonography had comparable specificities, but PET/CT had greater sensitivity than MRI (90.9% vs. 67.6%, P < 0.001) and similar sensitivity to ultrasonography in diagnosing lymph nodes. According to PET/CT, more patients were staged rT3-4 (82.8% vs. 68.1%, P < 0.001) or rN + (89.9% vs. 69.3%, P < 0.001), and the rN-stage was more accurate (90.6% vs. 73.8%, P < 0.001). Accordingly, the contours of local recurrence were more precise (median Dice similarity coefficient 0.41 vs. 0.62, P < 0.001) when aided by PET/CT plus MRI. Patients staged by PET/CT plus MRI had a higher 3-year OS than patients staged by MRI alone (85.5% vs. 60.4%, P = 0.006; adjusted HR = 0.34, P = 0.005). CONCLUSION: PET/CT more accurately detected and staged recurrence of nasopharyngeal carcinoma and accordingly complemented MRI, providing benefit in contouring and OS.


Subject(s)
Nasopharyngeal Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Fluorodeoxyglucose F18 , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/therapy , Salvage Therapy , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/pathology , Magnetic Resonance Imaging , Sensitivity and Specificity , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/therapy , Neoplasm Staging
19.
Exp Eye Res ; 229: 109416, 2023 04.
Article in English | MEDLINE | ID: mdl-36801237

ABSTRACT

Retinal ischemia-reperfusion (I/R) injury is a common pathophysiological stress state connected to various diseases, including acute glaucoma, retinal vascular obstruction, and diabetic retinopathy. Recent studies have suggested that geranylgeranylacetone (GGA) could increase heat shock protein70 (HSP70) level and reduce retinal ganglion cells (RGCs) apoptosis in a rat retinal I/R model. However, the underlying mechanism remains unclear. Moreover, the injury caused by retinal I/R includes not only apoptosis but also autophagy and gliosis, and the effects of GGA on autophagy and gliosis have not been reported. Our study established a retinal I/R model by anterior chamber perfusion pressuring to 110 mmHg for 60 min, followed by 4 h of reperfusion. The levels of HSP70, apoptosis-related proteins, GFAP, LC3-II, and PI3K/AKT/mTOR signaling proteins were determined by western blotting and qPCR after treatment with GGA, HSP70 inhibitor quercetin (Q), PI3K inhibitor LY294002, and mTOR inhibitor rapamycin. Apoptosis was evaluated by TUNEL staining, meanwhile, HSP70 and LC3 were detected by immunofluorescence. Our results demonstrated that GGA-induced HSP70 expression significantly reduced gliosis, autophagosome accumulation, and apoptosis in retinal I/R injury, indicating that GGA exerted protective effects on retinal I/R injury. Moreover, the protective effects of GGA mechanistically relied on the activation of PI3K/AKT/mTOR signaling. In conclusion, GGA-induced HSP70 overexpression has protective effects on retinal I/R injury by activating PI3K/AKT/mTOR signaling.


Subject(s)
Reperfusion Injury , Retinal Diseases , Animals , Rats , Apoptosis , Gliosis , Heat-Shock Response , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Retinal Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism , HSP70 Heat-Shock Proteins/metabolism
20.
Mol Cell Biochem ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542599

ABSTRACT

Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.

SELECTION OF CITATIONS
SEARCH DETAIL