Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Integr Neurosci ; 23(5): 99, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38812385

ABSTRACT

OBJECTIVE: The alterations of the functional network (FN) in anti-N-methyl-Daspartate receptor (NMDAR) encephalitis have been recognized by functional magnetic resonance imaging studies. However, few studies using the electroencephalogram (EEG) have been performed to explore the possible FN changes in anti-NMDAR encephalitis. In this study, the aim was to explore any FN changes in patients with anti-NMDAR encephalitis. METHODS: Twenty-nine anti-NMDAR encephalitis patients and 29 age- and gender-matched healthy controls (HC) were assessed using 19-channel EEG examination. For each participant, five 10-second epochs of resting state EEG with eyes closed were extracted. The cortical source signals of 84 Brodmann areas were calculated using the exact low resolution brain electromagnetic tomography (eLORETA) inverse solution by LORETA-KEY. Phase Lag Index (PLI) matrices were then obtained and graph and relative band power (RBP) analyses were performed. RESULTS: Compared with healthy controls, functional connectivity (FC) in the delta, theta, beta 1 and beta 2 bands significantly increased within the 84 cortical source signals of anti-NMDAR encephalitis patients (p < 0.05) and scalp FC in the alpha band decreased within the 19 electrodes. Additionally, the anti-NMDAR encephalitis group exhibited higher local efficiency and clustering coefficient compared to the healthy control group in the four bands. The slowing band RBP increased while the fast band RBP decreased in multiple-lobes and some of these changes in RBP were correlated with the modified Rankin Scale (mRS) and Mini-mental State Examination (MMSE) in anti-NMDAR encephalitis patients. CONCLUSIONS: This study further deepens the understanding of related changes in the abnormal brain network and power spectrum of anti-NMDA receptor encephalitis. The decreased scalp alpha FC may indicate brain dysfunction, while the increased source beta FC may indicate a compensatory mechanism for brain function in anti-NMDAR encephalitis patients. These findings extend understanding of how the brain FN changes from a cortical source perspective. Further studies are needed to detect correlations between altered FNs and clinical features and characterize their potential value for the management of anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Electroencephalography , Nerve Net , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/physiopathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Female , Male , Adult , Young Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain Waves/physiology , Adolescent , Brain/physiopathology , Brain/diagnostic imaging , Connectome
2.
Nat Mater ; 21(5): 540-546, 2022 05.
Article in English | MEDLINE | ID: mdl-35332292

ABSTRACT

Precise and selective manipulation of colloids and biological cells has long been motivated by applications in materials science, physics and the life sciences. Here we introduce our harmonic acoustics for a non-contact, dynamic, selective (HANDS) particle manipulation platform, which enables the reversible assembly of colloidal crystals or cells via the modulation of acoustic trapping positions with subwavelength resolution. We compose Fourier-synthesized harmonic waves to create soft acoustic lattices and colloidal crystals without using surface treatment or modifying their material properties. We have achieved active control of the lattice constant to dynamically modulate the interparticle distance in a high-throughput (>100 pairs), precise, selective and reversible manner. Furthermore, we apply this HANDS platform to quantify the intercellular adhesion forces among various cancer cell lines. Our biocompatible HANDS platform provides a highly versatile particle manipulation method that can handle soft matter and measure the interaction forces between living cells with high sensitivity.


Subject(s)
Acoustics , Colloids , Colloids/chemistry , Materials Science
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373161

ABSTRACT

Common buckwheat (Fagopyrum esculentum M.) is an important traditional miscellaneous grain crop. However, seed-shattering is a significant problem in common buckwheat. To investigate the genetic architecture and genetic regulation of seed-shattering in common buckwheat, we constructed a genetic linkage map using the F2 population of Gr (green-flower mutant and shattering resistance) and UD (white flower and susceptible to shattering), which included eight linkage groups with 174 loci, and detected seven QTLs of pedicel strength. RNA-seq analysis of pedicel in two parents revealed 214 differentially expressed genes DEGs that play roles in phenylpropanoid biosynthesis, vitamin B6 metabolism, and flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) was performed and screened out 19 core hub genes. Untargeted GC-MS analysis detected 138 different metabolites and conjoint analysis screened out 11 DEGs, which were significantly associated with differential metabolites. Furthermore, we identified 43 genes in the QTLs, of which six genes had high expression levels in the pedicel of common buckwheat. Finally, 21 candidate genes were screened out based on the above analysis and gene function. Our results provided additional knowledge for the identification and functions of causal candidate genes responsible for the variation in seed-shattering and would be an invaluable resource for the genetic dissection of common buckwheat resistance-shattering molecular breeding.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Fagopyrum/metabolism , Transcriptome , Chromosome Mapping , Seeds/metabolism , Gene Expression Profiling
4.
Proc Natl Acad Sci U S A ; 114(40): 10584-10589, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923936

ABSTRACT

Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine.


Subject(s)
Acoustics , Blood Cells/chemistry , Exosomes/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Blood Cells/cytology
5.
Small ; 14(32): e1801131, 2018 08.
Article in English | MEDLINE | ID: mdl-29968402

ABSTRACT

The study of circulating tumor cells (CTCs) offers pathways to develop new diagnostic and prognostic biomarkers that benefit cancer treatments. In order to fully exploit and interpret the information provided by CTCs, the development of a platform is reported that integrates acoustics and microfluidics to isolate rare CTCs from peripheral blood in high throughput while preserving their structural, biological, and functional integrity. Cancer cells are first isolated from leukocytes with a throughput of 7.5 mL h-1 , achieving a recovery rate of at least 86% while maintaining the cells' ability to proliferate. High-throughput acoustic separation enables statistical analysis of isolated CTCs from prostate cancer patients to be performed to determine their size distribution and phenotypic heterogeneity for a range of biomarkers, including the visualization of CTCs with a loss of expression for the prostate specific membrane antigen. The method also enables the isolation of even rarer, but clinically important, CTC clusters.


Subject(s)
Acoustics , Cell Separation/methods , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Computer Simulation , Dimethylpolysiloxanes/chemistry , Glass/chemistry , High-Throughput Screening Assays , Humans , Leukocytes/pathology , Male , Numerical Analysis, Computer-Assisted , Phenotype , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Rheology
7.
IEEE J Transl Eng Health Med ; 12: 106-118, 2024.
Article in English | MEDLINE | ID: mdl-38088998

ABSTRACT

Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.


Subject(s)
Emotions , Fractals , Recognition, Psychology , Electroencephalography , Neural Networks, Computer
8.
Biomed Pharmacother ; 175: 116697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759289

ABSTRACT

Vitamin K2 (VK2) is an effective compound for anti-ferroptosis and anti-osteoporosis, and Semen sojae praeparatum (Dandouchi in Chinese) is the main source of VK2. Chondrocyte ferroptosis and extracellular matrix (ECM) degradation playing a role in the pathogenesis of osteoarthritis (OA). Glutathione peroxidase 4 (GPX4) is the intersection of two mechanisms in regulating OA progression. But no studies have elucidated the therapeutic effects and mechanisms of VK2 on OA. This study utilized an in vivo rat OA model created via anterior cruciate ligament transection (ACLT) and an in vitro chondrocyte oxidative damage model induced by TBHP to investigate the protective effects and mechanisms of action of VK2 in OA. Knee joint pain in mice was evaluated using the Von Frey test. Micro-CT and Safranin O-Fast Green staining were employed to observe the extent of damage to the tibial cartilage and subchondral bone, while immunohistochemistry and PCR were used to examine GPX4 levels in joint cartilage. The effects of VK2 on rat chondrocyte viability were assessed using CCK-8 and flow cytometry assays, and chondrocyte morphology was observed with toluidine blue and alcian blue staining. The impact of VK2 on intracellular ferroptosis-related markers was observed using fluorescent staining and flow cytometry. Protein expression changes were detected by immunofluorescence and Western blot analysis. Furthermore, specific protein inhibitors were applied to confirm the dual-regulatory effects of VK2 on GPX4. VK2 can increase bone mass and cartilage thickness in the subchondral bone of the tibia, and reduce pain and the OARSI score induced by OA. Immunohistochemistry results indicate that VK2 exerts its anti-OA effects by regulating GPX4 to delay ECM degradation. VK2 can inhibit the activation of the MAPK/NFκB signaling pathway caused by reduced expression of intracellular GPX4, thereby decreasing ECM degradation. Additionally, VK2 can reverse the inhibitory effect of RSL3 on GPX4, increase intracellular GSH content and the GSH/GSSG ratio, reduce MDA content, and rescue chondrocyte ferroptosis. The protective mechanism of VK2 may involve its dual-target regulation of GPX4, reducing chondrocyte ferroptosis and inhibiting the MAPK/NFκB signaling pathway to decelerate the degradation of the chondrocyte extracellular matrix.


Subject(s)
Chondrocytes , Extracellular Matrix , Ferroptosis , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Vitamin K 2 , Animals , Ferroptosis/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Mice , Vitamin K 2/pharmacology , Vitamin K 2/analogs & derivatives , Mice, Inbred C57BL , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Cells, Cultured
9.
Microsyst Nanoeng ; 10: 23, 2024.
Article in English | MEDLINE | ID: mdl-38317693

ABSTRACT

Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.

10.
BMC Complement Med Ther ; 24(1): 24, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191438

ABSTRACT

BACKGROUND: There are accumulating type 2 diabetes patients who have osteoporosis simultaneously. More effective therapeutic strategies should be discovered. Biochanin A (BCA) has been indicated that can play a role in improving metabolic disorders of type 2 diabetes and preventing osteoporosis. But whether BCA can treat type 2 diabetic osteoporosis has not been studied. PURPOSE: To investigate if the BCA can protect against type 2 diabetic osteoporosis and clarify the mechanism. METHODS: Micro-CT and histology assays were performed to detect the trabecular bone and analyze the bone histomorphology effect of BCA. CCK-8 assay was performed to detect the toxicity of BCA. TRAcP staining, immunofluorescence and hydroxyapatite resorption assay were used to observe osteoclasts differentiation and resorptive activity. Molecular docking provided evidence about BCA regulating the MAPK axis via prediction by the algorithm. QRT-PCR and Western Blotting were utilized to detect the expression of osteoclastogenesis-related markers and MAPK signaling pathway. RESULTS: Accumulation of bone volume after BCA treatment could be found based on the 3D reconstruction. Besides, there were fewer osteoclasts in db/db mice treated with BCA than db/db mice treated with saline. In vitro, we found that BCA hadn't toxicity in osteoclasts precursor, but also inhibited differentiation of osteoclasts. Further, we found that BCA suppresses osteoclastogenesis via ROS/MAPK signaling pathway. CONCLUSION: BCA can prevent type 2 diabetic osteoporosis by restricting osteoclast differentiation via ROS/MAPK signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Osteogenesis , Animals , Mice , Humans , Molecular Docking Simulation , Reactive Oxygen Species , Diabetes Mellitus, Type 2/drug therapy , Signal Transduction
11.
Sci Rep ; 13(1): 13744, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612419

ABSTRACT

Iron homeostasis plays an essential role in joint health, while iron overload can cause damage and death of cartilage cells. Cardamonin (CAR) is a substance found in the fruit of the chasteberry plant and has anti-inflammatory and anti-tumor activities. We first administered iron dextran (500 mg/kg) intraperitoneally to establish an iron overload mouse model and surgically induced osteoarthritis. The extent of OA and iron deposition were assessed using Micro-ct, Safranin-O/fast green staining, H&E staining, and Prussian Blue 10 weeks later. We administered primary chondrocytes with Ferric Ammonium Citrate (FAC) to evaluate the chondrocyte changes. Chondrocytes were identified in vitro by toluidine blue staining, and chondrocyte viability was evaluated by CCK-8. The rate of apoptosis was determined by Annexin V-FITC/PI assay. The mechanism of action of CAR was verified by adding the SIRT1 inhibitor EX527, and the expression of SIRT1 and MAPK signaling pathways was detected by Western blot. Iron overload also promoted chondrocyte apoptosis, a process that was reversed by CAR. In addition, CAR reduced NLRP3 inflammasome production via the SIRT1-MAPK pathway, and the SIRT1 inhibitor EX527 inhibited the treatment of OA by CAR.CAR inhibited cartilage degeneration induced by iron overload both in vivo and in vitro. Besides, our study showed that iron overload not only inhibited type II collagen expression but also induced MMP expression by catalyzing the generation of NLRP3 inflammasome. Our results suggest that CAR can treat KOA by promoting SIRT1 expression and inhibiting p38MAPK pathway expression to reduce the production of NLRP3 inflammasome vesicles.


Subject(s)
Inflammasomes , Osteoarthritis , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Sirtuin 1 , Osteoarthritis/drug therapy , Signal Transduction , Iron
12.
Life Sci ; 312: 121092, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36279968

ABSTRACT

BACKGROUND: Metformin (MET) is widely used as a first-line hypoglycemic agent for the treatment of type 2 diabetes mellitus (T2DM) and was also confirmed to have a therapeutic effect on type 2 diabetic osteoporosis (T2DOP). However, the potential mechanisms of MET in the treatment of T2DOP are unclear. OBJECTIVE: To clarify the effect of MET in T2DOP and to explore the potential mechanism of MET in the treatment of T2DOP. METHODS: In vitro, we used MC3T3-E1 cells to study the effects of MET on osteogenic differentiation and anti-oxidative stress injury in a high glucose (Glucose 25 mM) environment. In vivo, we directly used db/db mice as a T2DOP model and assessed the osteoprotective effects of MET by Micro CT and histological analysis. RESULTS: In vitro, we found that MET increased ALP activity in MC3T3-E1 cells in a high-glucose environment, promoted the formation of bone mineralized nodules, and upregulated the expression of the osteogenesis-related transcription factors RUNX2, Osterix, and COL1A1-related genes. In addition, MET was able to reduce high glucose-induced reactive oxygen species (ROS) production. In studies on the underlying mechanisms, we found that MET activated the Nrf2/HO-1 signaling pathway and alleviated high-glucose-induced oxidative stress injury. In vivo results showed that MET reduced bone loss and bone microarchitecture destruction in db/db mice. CONCLUSION: Our results suggest that MET can activate the Nrf2/HO-1 signaling pathway to regulate the inhibition of osteogenic differentiation induced by high glucose thereby protecting T2DOP.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Osteoporosis , Animals , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Heme Oxygenase-1/metabolism , Metformin/pharmacology , Metformin/metabolism , NF-E2-Related Factor 2/metabolism , Osteoblasts , Osteogenesis , Osteoporosis/metabolism , Oxidative Stress , Signal Transduction
13.
Biomed Pharmacother ; 168: 115751, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879214

ABSTRACT

Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1ß-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.


Subject(s)
Curcumin , Osteoarthritis, Knee , Humans , Reactive Oxygen Species/metabolism , Curcumin/therapeutic use , Catalase/metabolism , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Hydrogen Peroxide/pharmacology , Chondrocytes/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism
14.
Microsyst Nanoeng ; 8: 45, 2022.
Article in English | MEDLINE | ID: mdl-35498337

ABSTRACT

Nanocarrier and exosome encapsulation has been found to significantly increase the efficacy of targeted drug delivery while also minimizing unwanted side effects. However, the development of exosome-encapsulated drug nanocarriers is limited by low drug loading efficiencies and/or complex, time-consuming drug loading processes. Herein, we have developed an acoustofluidic device that simultaneously performs both drug loading and exosome encapsulation. By synergistically leveraging the acoustic radiation force, acoustic microstreaming, and shear stresses in a rotating droplet, the concentration, and fusion of exosomes, drugs, and porous silica nanoparticles is achieved. The final product consists of drug-loaded silica nanocarriers that are encased within an exosomal membrane. The drug loading efficiency is significantly improved, with nearly 30% of the free drug (e.g., doxorubicin) molecules loaded into the nanocarriers. Furthermore, this acoustofluidic drug loading system circumvents the need for complex chemical modification, allowing drug loading and encapsulation to be completed within a matter of minutes. These exosome-encapsulated nanocarriers exhibit excellent efficiency in intracellular transport and are capable of significantly inhibiting tumor cell proliferation. By utilizing physical forces to rapidly generate hybrid nanocarriers, this acoustofluidic drug loading platform wields the potential to significantly impact innovation in both drug delivery research and applications.

15.
Sci Adv ; 8(47): eade0640, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417505

ABSTRACT

High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (<10 min), high-purity (>96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.

16.
Adv Sci (Weinh) ; 8(10): 2003642, 2021 05.
Article in English | MEDLINE | ID: mdl-34026443

ABSTRACT

The boom of plant phenotype highlights the need to measure the physiological characteristics of an individual plant. However, continuous real-time monitoring of a plant's internal physiological status remains challenging using traditional silicon-based sensor technology, due to the fundamental mismatch between rigid sensors and soft and curved plant surfaces. Here, the first flexible electronic sensing device is reported that can harmlessly cohabitate with the plant and continuously monitor its stem sap flow, a critical plant physiological characteristic for analyzing plant health, water consumption, and nutrient distribution. Due to a special design and the materials chosen, the realized plant-wearable sensor is thin, soft, lightweight, air/water/light-permeable, and shows excellent biocompatibility, therefore enabling the sap flow detection in a continuous and non-destructive manner. The sensor can serve as a noninvasive, high-throughput, low-cost toolbox, and holds excellent potentials in phenotyping. Furthermore, the real-time investigation on stem flow insides watermelon reveals a previously unknown day/night shift pattern of water allocation between fruit and its adjacent branch, which has not been reported before.


Subject(s)
Monitoring, Physiologic/instrumentation , Plant Development/physiology , Water/metabolism , Wearable Electronic Devices , Biological Transport , Pliability , Water/physiology
17.
Nat Commun ; 12(1): 3844, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158489

ABSTRACT

The ability to precisely manipulate nano-objects on a large scale can enable the fabrication of materials and devices with tunable optical, electromagnetic, and mechanical properties. However, the dynamic, parallel manipulation of nanoscale colloids and materials remains a significant challenge. Here, we demonstrate acoustoelectronic nanotweezers, which combine the precision and robustness afforded by electronic tweezers with versatility and large-field dynamic control granted by acoustic tweezing techniques, to enable the massively parallel manipulation of sub-100 nm objects with excellent versatility and controllability. Using this approach, we demonstrated the complex patterning of various nanoparticles (e.g., DNAs, exosomes, ~3 nm graphene flakes, ~6 nm quantum dots, ~3.5 nm proteins, and ~1.4 nm dextran), fabricated macroscopic materials with nano-textures, and performed high-resolution, single nanoparticle manipulation. Various nanomanipulation functions, including transportation, concentration, orientation, pattern-overlaying, and sorting, have also been achieved using a simple device configuration. Altogether, acoustoelectronic nanotweezers overcome existing limitations in nano-manipulation and hold great potential for a variety of applications in the fields of electronics, optics, condensed matter physics, metamaterials, and biomedicine.


Subject(s)
Electronics/methods , Nanostructures/chemistry , Nanotechnology/methods , Optical Tweezers , Acoustics , Colloids/chemistry , DNA/chemistry , Exosomes/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon , Particle Size , Reproducibility of Results
18.
Nat Commun ; 12(1): 1118, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602914

ABSTRACT

Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.


Subject(s)
Acoustics , Rotation , Zebrafish/anatomy & histology , Animals , Ethanol/pharmacology , Imaging, Three-Dimensional , Larva/anatomy & histology , Larva/drug effects , Liver/anatomy & histology , Liver/drug effects , Organ Size/drug effects , Phenotype , Transducers
19.
Lab Chip ; 21(12): 2453-2463, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33978043

ABSTRACT

High-molecular-weight polymeric nanoparticles are critical to increasing the loading efficacy and tuning the release profile of targeted molecules for medical diagnosis, imaging, and therapeutics. Although a number of microfluidic approaches have attained reproducible nanoparticle synthesis, it is still challenging to fabricate nanoparticles from high-molecular-weight polymers in a size and structure-controlled manner. In this work, an acoustofluidic platform is developed to synthesize size-tunable, high-molecular-weight (>45 kDa) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) nanoparticles without polymer aggregation by exploiting the characteristics of complete and ultrafast mixing. Moreover, the acoustofluidic approach achieves two features that have not been achieved by existing microfluidic approaches: (1) multi-step (≥2) sequential nanoprecipitation in a single device, and (2) synthesis of core-shell structured PLGA-PEG/lipid nanoparticles with high molecular weights. The developed platform expands microfluidic potential in nanomaterial synthesis, where high-molecular-weight polymers, multiple reagents, or sequential nanoprecipitations are needed.


Subject(s)
Nanoparticles , Polymers , Lipids , Microfluidics , Particle Size , Polyethylene Glycols
20.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523836

ABSTRACT

Liquid droplets have been studied for decades and have recently experienced renewed attention as a simplified model for numerous fascinating physical phenomena occurring on size scales from the cell nucleus to stellar black holes. Here, we present an acoustofluidic centrifugation technique that leverages an entanglement of acoustic wave actuation and the spin of a fluidic droplet to enable nanoparticle enrichment and separation. By combining acoustic streaming and droplet spinning, rapid (<1 min) nanoparticle concentration and size-based separation are achieved with a resolution sufficient to identify and isolate exosome subpopulations. The underlying physical mechanisms have been characterized both numerically and experimentally, and the ability to process biological samples (including DNA segments and exosome subpopulations) has been successfully demonstrated. Together, this acoustofluidic centrifuge overcomes existing limitations in the manipulation of nanoscale (<100 nm) bioparticles and can be valuable for various applications in the fields of biology, chemistry, engineering, material science, and medicine.

SELECTION OF CITATIONS
SEARCH DETAIL