Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Am Chem Soc ; 146(2): 1563-1571, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38141030

ABSTRACT

Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.

2.
Opt Express ; 32(3): 2942-2958, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297530

ABSTRACT

A method for spectral reflectance factor reconstruction based on wideband multi-illuminant imaging was proposed, using a programmable LED lighting system and modified Bare Bones Particle Swarm Optimization algorithms. From a set of 16 LEDs with different spectral power distributions, nine light sources with correlated color temperatures in the range of 1924 K - 15746 K, most of them daylight simulators, were generated. Samples from three color charts (X-Rite ColorChecker Digital SG, SCOCIE ScoColor paint chart, and SCOCIE ScoColor textile chart), were captured by a color industrial camera under the nine light sources, and used in sequence as training and/or testing colors. The spectral reconstruction models achieved under multi-illuminant imaging were trained and tested using the canonical Bare Bones Particle Swarm Optimization and its proposed modifications, along with six additional and commonly used algorithms. The impacts of different illuminants, illuminant combinations, algorithms, and training colors on reconstruction accuracy were studied comprehensively. The results indicated that training colors covering larger regions of color space give more accurate reconstructions of spectral reflectance factors, and combinations of two illuminants with a large difference of correlated color temperature achieve more than twice the accuracy of that under a single illuminant. Specifically, the average reconstruction error by the method proposed in this paper for patches from two color charts under A + D90 light sources was 0.94 and 1.08 CIEDE2000 color difference units. The results of the experiment also confirmed that some reconstruction algorithms are unsuitable for predicting spectral reflectance factors from multi-illuminant images due to the complexity of optimization problems and insufficient accuracy. The proposed reconstruction method has many advantages, such as being simple in operation, with no requirement of prior knowledge, and easy to implement in non-contact color measurement and color reproduction devices.

3.
Angew Chem Int Ed Engl ; 63(30): e202405983, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38699982

ABSTRACT

On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO2. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.

4.
Angew Chem Int Ed Engl ; 63(13): e202318185, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38299925

ABSTRACT

The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.

5.
Plant Dis ; 107(11): 3608-3615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37272041

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging foliage diseases of wheat across the world. Aegilops geniculata Roth is a valuable gene resource for enhancing wheat resistance to powdery mildew. This study identified Ae. geniculata accession PI 487224 as immune and PI 487228 as susceptible to powdery mildew. Genetic analysis of the F1, F2, and F2:3 progeny derived from PI 487224 × PI 487228 showed that powdery mildew resistance in PI 487224 was controlled by two independent dominant genes located on two different nonhomologous chromosomes. By combing bulked segregant RNA-Seq, genetic linkage analysis of a single resistance gene segregation population, and marker analysis of a set of 14 wheat-Ae. geniculata chromosome addition lines, one of the resistance genes, temperately designated PmAege7M, was mapped to a 4.9-cM interval flanked by markers STS7-55926 and SNP7-45792/STS7-65911 on the long arm of chromosome 7 Mg of PI 487224, spanning 604.73 to 622.82 Mb on the 7D long arm based on the Ae. tauschii reference genome (Aet_v4.0). The map and closely linked markers of PmAege7M from Ae. geniculata in this study will facilitate the transfer of PmAege7M into common wheat and fine mapping of the gene.


Subject(s)
Aegilops , Triticum , Triticum/genetics , Aegilops/genetics , Genetic Markers/genetics , Genes, Plant/genetics , Chromosome Mapping , Erysiphe/genetics
6.
J Am Chem Soc ; 144(2): 723-732, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34964646

ABSTRACT

We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular-adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e., 2,2'-dibromobiphenyl (DBBP) and 2,2',6,6'-tetrabromo-1,1'-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a biradical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine with atomic precision the bond-length alternation of the biphenylene dimer product, which contains 4-, 6-, and 8-membered rings. The 4-membered ring units turn out to be radialene structures.

7.
Chemistry ; 28(48): e202200944, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35686485

ABSTRACT

Atomic scale defects significantly affect the mechanical, electronic, and optical properties of π-conjugated polymers. Here, isolated atomic-scale defects are deliberately introduced into a prototypical anthracene-ethynylene π-conjugated polymer, and its local density of states is carefully examined on the atomic scale to show how individual defects modify the inherent electronic and magnetic properties of this one-dimensional systems. Scanning tunneling and atomic force microscopy experiments, supplemented with density functional theory calculations, reveal the existence of a sharp electronic resonance at the Fermi energy around certain defects, which is associated with the formation of a local magnetic moment accompanied by substantial mitigation of the mobility of charge carriers. While defects in traditionally synthesized polymers lead to arbitrary conformations, the presented results clearly reflect the preferential formation of low dimensional defects at specific polymer sites, which may introduce the possibility of engineering macroscopic defects in surface-synthesized conjugated polymers.

8.
Theor Appl Genet ; 135(9): 2993-3003, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35831461

ABSTRACT

KEY MESSAGE: A novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis was transferred into common wheat and mapped to chromosome 2MbL bin FL 0.49-0.66 by molecular cytogenetic analysis of 2Mb recombinants. Aegilops biuncialis, a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies identified that chromosome 2Mb in Chinese Spring (CS)-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to powdery mildew, and the resistance gene was temporarily designated as Pm2Mb. In this study, a total of 65 CS-Ae. biuncialis 2Mb recombinants were developed by ph1b-induced homoeologous recombination and they were grouped into 12 different types based on the presence of different markers of 2Mb-specificity. Segment sizes and breakpoints of each 2Mb recombinant type were further characterized using in situ hybridization and molecular marker analyses. Powdery mildew responses of each type were assessed by inoculation of each 2Mb recombinant-derived F2 progenies using the isolate E05. Combined analyses of in situ hybridization, molecular markers and powdery mildew resistance data of the 2Mb recombinants, the gene Pm2Mb was cytologically located to an interval of FL 0.49-0.66 in the long arm of 2Mb, where 19 2Mb-specific markers were located. Among the 65 2Mb recombinants, T-11 (T2DS.2DL-2MbL) and T-12 (Ti2DS.2DL-2MbL-2DL) contained a small 2MbL segment harboring Pm2Mb. Besides, a physical map of chromosome 2Mb was constructed with 70 2Mb-specific markers in 10 chromosomal bins and the map showed that submetacentric chromosome 2Mb of Ae. biuncialis was rearranged by a terminal intrachromosomal translocation. The newly developed 2Mb recombinants with powdery mildew resistance, the 2Mb-specific molecular markers and the physical map of chromosome 2Mb will benefit wheat disease breeding as well as fine mapping and cloning of Pm2Mb.


Subject(s)
Aegilops , Ascomycota , Aegilops/genetics , Ascomycota/physiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant , Genetic Markers , Plant Breeding , Plant Diseases/genetics , Recombination, Genetic , Triticum/genetics
9.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269925

ABSTRACT

Environmental stresses, especially heat and drought, severely limit plant growth and negatively affect wheat yield and quality worldwide. Heat shock factors (Hsfs) play a central role in regulating plant responses to various stresses. In this study, the wheat heat shock factor gene TaHsfA2e-5D on chromosome 5D was isolated and functionally characterized, with the goal of investigating its role in responses to heat and drought stresses. Gene expression profiling showed that TaHsfA2e-5D was expressed constitutively in various wheat tissues, most highly in roots at the reproductive stage. The expression of TaHsfA2e-5D was highly up-regulated in wheat seedlings by heat, cold, drought, high salinity, and multiple phytohormones. The TaHsfA2e-5D protein was localized in the nucleus and showed a transcriptional activation activity. Ectopic expression of the TaHsfA2e-5D in yeast exhibited improved thermotolerance. Overexpression of the TaHsfA2e-5D in Arabidopsis results in enhanced tolerance to heat and drought stresses. Furthermore, RT-qPCR analyses revealed that TaHsfA2e-5D functions through increasing the expression of Hsp genes and other stress-related genes, including APX2 and GolS1. Collectively, these results suggest that TaHsfA2e-5D functions as a positive regulator of plants' responses to heat and drought stresses, which may be of great significance for understanding and improving environmental stress tolerance in crops.


Subject(s)
Arabidopsis , Triticum , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Triticum/metabolism
10.
Plant Dis ; 105(10): 2938-2945, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33787309

ABSTRACT

Powdery mildew of wheat, caused by Blumeria graminis f. sp. tritici, is a destructive disease of common wheat. Cultivation of resistant varieties is the most cost-effective disease management strategy. Previous studies reported that chromosome 3Sl#2 present in Chinese Spring (CS)-Aegilops longissima 3Sl#2(3B) disomic substitution line TA3575 conferred resistance to powdery mildew. In this study, we further located the powdery mildew resistance gene(s) to the short arm of chromosome 3Sl#2 (3Sl#2S) by evaluating for B. graminis f. sp. tritici resistance of newly developed CS-Ae. longissima 3Sl#2 translocation lines. Meanwhile, TA7545, a previously designated CS-Ae. longissima 3Sl#3 disomic addition line, was reidentified as an isochromosome 3Sl#3S addition line and evaluated to confer resistance to powdery mildew, thus locating the resistance gene(s) to the short arm of chromosome 3Sl#3 (3Sl#3S). Based on transcriptome sequences of TA3575, 10 novel chromosome 3SlS-specific markers were developed, of which 5 could be used to distinguish between 3Sl#2S and 3Sl#3S derived from Ae. longissima accessions TL20 and TA1910 (TAM4) and the remaining 5 could identify both 3Sl#2S and 3Sl#3S. Also, CL897, one of five markers specific to both 3Sl#2S and 3Sl#3S, could be used to detect Pm13 located at chromosome 3Sl#1S from Ae. longissima accession TL01 in diverse wheat genetic backgrounds. The powdery mildew resistance genes on chromosomes 3Sl#2S and 3Sl#3S, the CS-Ae. longissima 3Sl#2 translocation lines, and the 3SlS-specific markers developed in this study will facilitate the transfer of B. graminis f. sp. tritici resistance genes into common wheat and provide new germplasm resources for powdery mildew resistance breeding.


Subject(s)
Aegilops , Aegilops/genetics , Chromosomes, Human, Pair 3 , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Humans , Plant Diseases/genetics , Triticum/genetics
11.
Int J Mol Sci ; 21(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947730

ABSTRACT

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75-0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.


Subject(s)
Aegilops/genetics , Ascomycota/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Aegilops/microbiology , Chromosomes, Plant , Disease Resistance , Genes, Plant , Physical Chromosome Mapping , Triticum/genetics , Triticum/microbiology
12.
ACS Appl Mater Interfaces ; 16(39): 52487-52500, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298377

ABSTRACT

The splendid energy storage performances with eminent stability of dielectric ceramics utilized in pulsed power devices have been paid more attention by researchers. This scheme can be basically realized through introducing Li+, Bi(Mg2/3Ta1/3)O3, NaNbO3, and LiF into KNN-based ceramics. Under the breakdown strength (BDS) of 460 kV/cm, an outstanding energy storage density (W) of 6.05 J/cm3 with a high energy efficiency (η) of 85.9% is implemented. Within the broad temperature range from 20 to 140 °C, the numerical fluctuations of energy storage characteristics can be maintained at a relatively stable level (ΔWrec ≈ 3.5%, Δη ≈ 2.8%). As for the charging-discharging performances, this component possesses a fast discharging speed (t0.90 ≈ 51 ns) and remarkable temperature stability (the variations are smaller than 3.5%). Additionally, the internal mechanisms of outstanding energy storage properties can be confirmed via crystal structures and domain structures, the content of oxygen vacancies, dielectric and impedance spectra, and phase simulation. Hence, the combination of outstanding energy storage with remarkable thermal stability can be fulfilled in one ceramic system according to this discovery, providing a research thought of developing the materials for dielectric capacitors.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124298, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38642522

ABSTRACT

Acute mesenteric ischemia (AMI) is a clinically significant vascular and gastrointestinal condition, which is closely related to the blood supply of the small intestine. Unfortunately, it is still challenging to properly discriminate small intestinal tissues with different degrees of ischemia. In this study, hyperspectral imaging (HSI) was used to construct pseudo-color images of oxygen saturation about small intestinal tissues and to discriminate different degrees of ischemia. First, several small intestine tissue models of New Zealand white rabbits were prepared and collected their hyperspectral data. Then, a set of isosbestic points were used to linearly transform the measurement data twice to match the reference spectra of oxyhemoglobin and deoxyhemoglobin, respectively. The oxygen saturation was measured at the characteristic peak band of oxyhemoglobin (560 nm). Ultimately, using the oxygenated hemoglobin reflectance spectrum as the benchmark, we obtained the relative amount of median oxygen saturation in normal tissues was 70.0 %, the IQR was 10.1 %, the relative amount of median oxygen saturation in ischemic tissues was 49.6 %, and the IQR was 14.6 %. The results demonstrate that HSI combined with the oxygen saturation computation method can efficiently differentiate between normal and ischemic regions of the small intestinal tissues. This technique provides a powerful support for internist to discriminate small bowel tissues with different degrees of ischemia, and also provides a new way of thinking for the diagnosis of AMI.


Subject(s)
Hyperspectral Imaging , Intestine, Small , Necrosis , Oxygen Saturation , Oxygen , Animals , Rabbits , Intestine, Small/blood supply , Intestine, Small/metabolism , Intestine, Small/pathology , Oxygen/blood , Oxygen/metabolism , Hyperspectral Imaging/methods , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Hemoglobins/analysis
14.
Nat Chem ; 16(6): 938-944, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374456

ABSTRACT

Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.

15.
Environ Sci Pollut Res Int ; 30(42): 96554-96561, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37578587

ABSTRACT

In this study, we have utilized corn bract, a green agricultural by-product, as a carrier. It is subsequently modified with zinc sulfide to synthesize an efficient composite material termed as corn bract/polydopamine@zinc sulfide (CB/PDA@ZnS). This novel composite demonstrates significant potential for biomass removal of mercury ions (Hg(II)). The composition, structure, and morphology of CB/PDA@ZnS composites are characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscope (SEM). The effect of pH value, adsorbent dosage, initial Hg(II) concentration, adsorption time and temperature, and coexistence ions on the adsorption behavior is investigated. The results show that CB/PDA@ZnS can efficiently remove Hg(II) from water with uptake capacities of 333.03 mg/g and removal efficiency of 99.91% under an optimal conditions (pH of 3, the adsorbent dosage of 0.015 g, contact time of 90 min, and initial concentration of 100 mg/L) at room temperature. The fitting analysis of the experimental data reveals that the adsorption process of Hg(II) follows the quasi-secondary adsorption kinetic model as well as the Langmuir isothermal adsorption model, which is a spontaneous heat absorption process. In addition, the composite adsorbent obtained exhibit excellent selectivity for Hg(II) ions and anti-coexisting ion interference performance. After five cycles of adsorption-desorption experiments, the corresponding adsorption capacity is 331.11 mg/g, accounting for 93.33% of the first adsorption capacity, indicating that the adsorbent has excellent regeneration performance. The stability of the adsorbent and the adsorption mechanism of Hg(II) ion are systematically discussed using FT-IR, XRD, and X-ray photoelectron spectroscopy (XPS). Finally, this adsorbent is tested for the removal of industrial wastewater containing Hg(II), and the adsorption and removal efficiency are 331.67 mg/g and 99.50%, respectively. This study provides a very valuable information for future Hg(II) removal from aqueous solutions.


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/analysis , Zea mays , Dopamine/analysis , Spectroscopy, Fourier Transform Infrared , Water , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
16.
J Inflamm Res ; 16: 6301-6317, 2023.
Article in English | MEDLINE | ID: mdl-38149115

ABSTRACT

Purpose of the Review: Emerging evidence has shown that ankylosing spondylitis fibroblasts (ASFs) act as crucial participants in inflammation and abnormal ossification in ankylosing spondylitis (AS). This review examines the investigations into ASFs and their pathological behavior, which contributes to inflammatory microenvironments and abnormal bone formation. The review spans the period from 2000 to 2023, with a primary focus on the most recent decade. Additionally, the review provides an in-depth discussion on studies on ASF ossification at the cellular level. Recent Findings: ASFs organize immune functions by recruiting immune cells and influencing their differentiation and activation, thus mediate the inflammatory response in the early phase of disease. ASFs promote joint destruction at sites of cartilage and actively promote abnormal ossification by recruiting osteoblasts, differentiation into myofibroblasts or ossification directly. Many signaling pathways and cytokines such as Wnt signaling and BMP/TGF-ß signaling are involved in ASF ossification. Summary: ASFs play a key role in AS inflammation and osteogenesis. Further studies are required to elucidate molecular mechanisms behind that and provide new targets and directions for AS diagnosis and treatment from a new perspective of fibroblasts.

17.
J Diabetes Sci Technol ; 17(4): 909-915, 2023 07.
Article in English | MEDLINE | ID: mdl-36825611

ABSTRACT

BACKGROUND: Delayed initiation and inadequate titration remain critical challenges to optimizing insulin therapy in type 2 diabetes (T2D). We aimed to study whether hemoglobin A1c (HbA1c) can be lowered in people with insulin-treated T2D using telemonitoring. METHODS: This single-center study recruited adults with greater than or equal to six months of diabetes, greater than or equal to three months of insulin therapy, HbA1c ≥8.5% and ≤12.5%, and body mass index (BMI) ≤40 kg/m2. All participants received a connected glucose meter and the accompanying smartphone application. Participants sent weekly blood glucose (BG) diary to their primary endocrinologist via email. Adjustments in insulin doses were communicated to the participants. HbA1c, proportion of BG readings in range (70-180 mg/dL, PIR), below range (<70 mg/dL, PBR) and above range (>180 mg/dL, PAR), and glycemic variability as the coefficient of variation (% CV) were measured at baseline, week 12, and week 24 and compared using repeated-measures analysis of variance (ANOVA) or Friedman's ANOVA. RESULTS: We recruited 40 people (55% women). Mean age was 57.9 years, BMI 27.8 kg/m2, and baseline HbA1c 9.8% (83.7 mmol/mol). Mean HbA1c improved by 1.7%, % CV reduced from 32.9% to 30.7%, PIR increased from 58.8% to 67.1% (all P <.01) by week 24, without any change in PBR. This was achieved with a 0.04 U/kg/d median increase in total daily dose of insulin and 0.9 kg weight gain over 24 weeks. CONCLUSION: Telemonitoring and titration of insulin using a connected glucose meter resulted in significant improvements in glycemia, characterized by a reduction in HbA1c, increase in PIR, and reduction in glycemic variability without any increase in hypoglycemia.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Female , Humans , Middle Aged , Male , Diabetes Mellitus, Type 2/drug therapy , Insulin/therapeutic use , Hypoglycemic Agents/therapeutic use , Glycated Hemoglobin , Glucose , Blood Glucose , Insulin, Regular, Human/therapeutic use
18.
J Phys Condens Matter ; 35(33)2023 May 24.
Article in English | MEDLINE | ID: mdl-37168002

ABSTRACT

Two-dimensional (2D) layered group IV-VI semiconductors attract great interest due to their potential applications in nanoelectronics. Depending on the dimensionality, different phases of the same material can present completely different electronic and optical properties, expanding its applications. Here, we present a combined experimental and theoretical study of the atomic structure and electronic properties of epitaxial SnSe structures grown on a metallic Au(111) substrate, forming almost defect-free 2D layers. We describe a coverage-dependent transition from a metallicß-SnSe to a semiconductingα-SnSe phase. The combination of scanning tunneling microscopy/spectroscopy, non-contact atomic force microscopy, x-ray photoelectron spectroscopy/diffraction and angle-resolved photoemission spectroscopy, complemented by density functional theory, provides a comprehensive study of the geometric and electronic structure of both phases. Our work demonstrates the possibility to grow two distinct SnSe phases on Au(111) with high quality and on a large scale. The strong interaction with the substrate allows the stabilization of the previously experimentally unreportedß-SnSe, while the ultra-thin films of orthorhombicα-SnSe are structurally and electronically equivalent to bulk SnSe.

19.
RSC Adv ; 12(49): 31792-31800, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36380957

ABSTRACT

As known, mercury contamination is one of the current environmental issues due to the high toxicity of mercury. Corn bract (CB) is an agricultural by-product, and its final treatment is generally incineration that causes air pollution. In this study, a new type of high-efficiency biomass adsorbent (CB@MoS2) for adsorption of Hg(ii) was obtained, and its morphology and structure were characterized with FT-IR, XRD, SEM and TEM. The results showed that when the pH value, Hg(ii) ion concentration and adsorption time were 4, 100 mg L-1 and 120 min, the adsorption capacity and removal rate could reach 332.50 mg g-1 and 99.75%. In addition, CB@MoS2 had a good selectivity for Hg(ii) ions. The adsorption behavior followed pseudo-second-order kinetics, indicating that the adsorption of Hg(ii) ions by CB@MoS2 was a chemical adsorption. After five adsorption-desorption experiments, it still possessed good adsorption performance and effective regeneration. In short, CB@MoS2 has high efficiency and good reusability, and will become a candidate material for the treatment of mercury-containing industrial wastewater.

20.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35055243

ABSTRACT

The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.

SELECTION OF CITATIONS
SEARCH DETAIL